A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simulating fuel management for protecting regional biodiversity under climate change. | LitMetric

Simulating fuel management for protecting regional biodiversity under climate change.

J Environ Manage

Fire Ecology and Biodiversity Group, The University of Melbourne, School of Agriculture, Food and Ecosystem Sciences, Creswick, VIC, Australia.

Published: December 2024

Climate change is resulting in larger, more frequent, and more severe wildfires which have increasingly negative impacts on people and the environment. Under these circumstances, it is critical to determine whether fire management actions can mitigate biodiversity impacts under future fire regimes. However, it is currently unclear how changing climate and management interact to influence the spatial distribution of risks to biodiversity. We used fire simulations to quantify the influence of 13 fuel management strategies on animal biodiversity in the Otways, southeastern Australia, under four alternative climate scenarios. Our management strategies include combinations of prescribed burning, mulching, and strategic fuel breaks modelled in various spatial configurations and frequencies. We assessed the capacity of treatments to reduce risk of fire to animal biodiversity by quantifying changes to extent burnt, wildfire frequency and wildfire severity. All management strategies reduced the average annual area burnt across the landscape, however, there was considerable variability over time and under different climate models. Similarly, spatial shifts in fire frequency and severity in some cases resulted in the shifting of fires away from some areas of high value to animals. There is no one size fits all management strategy for reducing impacts to biodiversity under variable future climates. However, all the strategies tested here reduced median impacts relative to a do-nothing approach for at least some aspects of the fire regime or for animal biodiversity. We highlight the importance of evaluating fire management effectiveness against a range of metrics to ensure multiple objectives are met under the increasingly unknown climate conditions we can expect going forward.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123731DOI Listing

Publication Analysis

Top Keywords

management strategies
12
animal biodiversity
12
management
8
fuel management
8
climate change
8
fire management
8
biodiversity
7
fire
7
climate
6
simulating fuel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!