Increasing wildfire severity is of growing concern in the western United States, with consequences for the production, composition, and mobilization of dissolved organic matter (DOM) from terrestrial to aquatic systems. Our current understanding of wildfire impacted DOM (often termed pyrogenic DOM) composition is largely built from temperature-based studies that can be difficult to extrapolate to field conditions, which are often defined by 'burn severity', or the post-wildfire impact observed at a site. Thus, burn severity can encapsulate a broader range of fire and environmental conditions not exclusive to temperature. Biogeochemical studies that describe DOM along burn severity continuums remain limited but are needed to better link DOM composition with field conditions post-fire. In this study, we addressed this need with an experimental open air burn simulation that generated chars from vegetation representative of major land cover types in the western United States. The chars were leached to simulate DOM mobilization potential. The DOM composition was characterized by ultra-high resolution mass spectrometry (HR-MS) and UV/VIS absorbance and fluorescence. Our results indicated that the shifts of DOM production and composition along a burn-severity gradient depends on the land cover type that was burned, with the degree of change dependent on the composition of the starting parent vegetation material. Fluorescence signatures indicated a strong convergence across land cover types to more aromatic DOM with increasing severity, while HR-MS indicated an increase in the production of aromatic nitrogen containing DOM with increasing severity. Results from this study enhance our ability to describe DOM composition in a framework that can be more directly related with field and remote-sensing based metrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.178040 | DOI Listing |
Huan Jing Ke Xue
January 2025
College of Ecology and Environment, Ningxia University, Yinchuan 750021, China.
Replacing traditional plastic mulch with fully biodegradable mulch is an important research direction to solve the problem of "white pollution," but whether it can truly realize biodegradation is still the focus of many scholars. In this study, field and indoor experiments were carried out in Pingluo County, Ningxia Hui Autonomous Region, using poly(butyleneadipate-co-terephthalate) (PBAT) fully biodegradable mulch film and ordinary polyethylene (PE) mulch film, with no mulch film (CK) as the control. Macroscopic characteristics such as the degree of apparent cracking of the mulch film, loss of the mulch film area, and the rate of weight loss were observed, and the results were combined with the results of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry (TGR).
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
Mine ecological restoration has experienced a long-term development process in China, in which various technologies have been constantly developing and integrating. Based on the related theoretical research and field program, the technical system of mine ecological restoration was constructed, and the characteristics of key technologies were specifically grasped. In this research, the environment, including natural elements and the spatial environment, is the object of mine ecological restoration, which requires further long-term investigation and monitoring.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
Exploring the spatial-temporal evolution characteristics of land use carbon emissions and their influencing factors is of great significance for the optimization of land use structure, the formulation of emission reduction policies, and the development of a regional low-carbon economy. Based on land cover and energy consumption data, a multi-parameter land use carbon emission accounting system was constructed to calculate land use carbon emissions in Shandong Province. Moreover, the spatial-temporal evolution and influencing factors of land use carbon emissions were analyzed based on the Gini coefficient and logarithmic mean Divisia index.
View Article and Find Full Text PDFSci Total Environ
December 2024
Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan. Electronic address:
Understanding multifaceted climate change risks and their interconnections is essential for effective adaptation strategies, which require comprehensive assessments of both climatic impact variations and social-environmental exposures/vulnerabilities. This study examines these interconnections and creates multitier delineations of future climate risks across Japan by overlaying homogeneous impact zones (HIZs) with exposure-vulnerability complexes (EVCs). We delineated eight EVC regions, each exhibiting similar patterns of exposure and vulnerability, via multivariate clustering and similarity search on the basis of future population and land cover/use data.
View Article and Find Full Text PDFSci Total Environ
December 2024
Greentech Research Team, Thuyloi University, 175 Tayson Street, Dongda District, Hanoi, Viet Nam.
In the past, unsanitary landfills were a common method for municipal solid waste disposal in developing countries. Although many nations have closed these landfills, the environmental pollution risks and impacts persist. This study introduces a new multi-criteria risk assessment framework specifically designed for closed, unsanitary landfills.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!