A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lactate modulates microglial inflammatory responses through HIF-1α-mediated CCL7 signaling after cerebral ischemia in mice. | LitMetric

AI Article Synopsis

  • Lactate plays a crucial role in reducing neuroinflammation and neuronal injury after ischemic stroke by regulating microglial responses through HIF-1α.
  • Administration of lactate post-reperfusion results in decreased infarct size, reduced neuronal apoptosis, and improved neurological functions in mice subjected to middle cerebral artery occlusion (MCAO).
  • There is a notable alteration in inflammatory markers and signaling pathways, indicating that lactate not only modifies inflammation but also involves CCL7 as a key player in the neuroprotective effects against cerebral ischemia-reperfusion injury.

Article Abstract

Lactate is a potent regulator of neuroinflammation. We recently demonstrated that lactate alleviated neuronal injury via HIF-1α-regulated microglial inflammation after oxygen-glucose deprivation (OGD). However, the underlying mechanisms and the effect of lactate on microglial responses after ischemic stroke remained unknown. Mouse acute cerebral ischemia-reperfusion injury was induced by middle cerebral artery occlusion (MCAO). L-lactate (100 mM, 2 μl) was intracerebroventricularly administrated 30 min after the reperfusion. Microglia responses were evidenced by the expression of multiple markers such as CD86, iNOS, arginase-1, CD206 and Ym1 in the peri-infarction 24 h after MCAO using western blot analysis and quantitative real-time PCR. Inflammatory factors IL-6, TNF-α, TGF-β and IL-10, as well as NF-κB signaling were also detected. Infarct size and neuronal apoptosis in the peri-infarction at 24 h, mice survival within 7 days and long-term neurobehavioral function were evaluated. The involvement of HIF-1α in lactate-mediated microglial inflammation after MCAO was assessed using a HIF-1α inhibitor. Additionally, transcriptome analysis was used to identify the potential lactate targets in BV2 cells after OGD. The recombinant product of the identified CCL7 gene was used to verify its effect on cerebral ischemia-reperfusion injury in vivo. Lactate supplementation reduced infarction volume, neuronal apoptosis and neurological deficits. Lactate reduced the expression of CD86, iNOS, IL-6, TNF-α and elevated the expression of arginase-1, CD206, Ym1, TGF-β and IL-10 in the peri-infarction at 24 h after reperfusion. Consistently, lactate inhibited the NF-κB signaling. Additionally, lactate upregulated HIF-1α in microglia 24 h after reperfusion, while inhibition of HIF-1α reversed the effects of lactate on brain damage and neuroinflammation after cerebral ischemia. Furthermore, CCL7 was identified as the top down-regulated inflammatory gene induced by lactate in OGD-treated BV2 cells. It was also found high expression of CCL7 in the peri-infarction at 24 h after reperfusion and lactate treatment inhibited CCL7 expression. However, HIF-1α inhibitor reversed the effect of lactate treatment on CCL7 expression. Finally, supplementation of recombinant CCL7 reversed the mitigated neuroinflammation and neuroprotective effect rendered by lactate treatment after MCAO. We concluded that treatment with lactate modulated the microglia inflammatory responses and alleviated cerebral ischemia injury. The inhibition of CCL7/NF-κB signaling by HIF-1α might be involved in the beneficial effect of lactate treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113801DOI Listing

Publication Analysis

Top Keywords

lactate
16
peri-infarction 24 h
16
lactate treatment
16
cerebral ischemia
12
24 h reperfusion
12
inflammatory responses
8
microglial inflammation
8
cerebral ischemia-reperfusion
8
ischemia-reperfusion injury
8
cd86 inos
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!