Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1). EHMT2 is a gene acting in epigenetic regulation; however, the involvement of mutations in this gene in the etiology of NDDs has not been established thus far. A homozygous EHMT2 LoF variant [(NM_006709.5):c.328 + 2 T > G] was identified by exome sequencing in an adult female patient with a phenotype resembling KS1, presenting with intellectual disability, aggressive behavior, facial dysmorphisms, fused C2-C3 vertebrae, ventricular septal defect, supernumerary nipple, umbilical hernia, and fingers and toes abnormalities. The absence of homozygous LoF EHMT2 variants in population databases underscores the significant negative selection pressure exerted on these variants. In silico evaluation of the effect of the EHMT2(NM_006709.5):c.328 + 2 T > G variant predicted the abolishment of intron 3 splice donor site. However, manual inspection revealed potential cryptic donor splice sites at this EHMT2 region. To directly access the impact of this splice site variant, RNAseq analysis was employed and disclosed the usage of two cryptic donor sites within exon 3 in the patient's blood, which are predicted to result in either an out-of-frame or in-frame effect on the protein. Methylation analysis was conducted on DNA from blood samples using the clinically validated EpiSign assay, which revealed that the patient with the homozygous EHMT2(NM_006709.5):c.328 + 2 T > G splice site variant is conclusively positive for the KS1 episignature. Taken together, clinical, genetic, and epigenetic data pointed to a LoF mechanism for the EHMT2 splice variant and support this gene as a novel candidate for an autosomal recessive Kleefstra-like syndrome. The identification of additional cases with deleterious EHMT2 variants, alongside further functional validation studies, is required to substantiate EHMT2 as a novel NDD gene.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-024-04655-xDOI Listing

Publication Analysis

Top Keywords

ehmt2
8
autosomal recessive
8
ehmt2 variants
8
cryptic donor
8
splice site
8
site variant
8
gene
6
variant
5
splice
5
ehmt2 candidate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!