Closed-Loop Deep Brain Stimulation Platform for Translational Research.

Neuromodulation

Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Academy for Engineering and Technology, Fudan University, Shanghai, China. Electronic address:

Published: December 2024

Objective: This study aims to facilitate the translation of innovative closed-loop deep brain stimulation (DBS) strategies from theory to practice by establishing a research platform. The platform addresses the challenges of real-time stimulation artifact removal, low-latency feedback stimulation, and rapid translation from animal to clinical experiments.

Materials And Methods: The platform comprises hardware for neural sensing and stimulation, a closed-loop software framework for real-time data streaming and computation, and an algorithm library for implementing closed-loop DBS strategies. The platform integrates hardware for both animal and clinical research. The closed-loop software framework handles the entire closed-loop stimulation, including data streaming, stimulation artifact removal, preprocessing, a closed-loop stimulation strategy, and stimulation control. It provides a unified programming interface for both C/C++ and Python, enabling secondary development to integrate new closed-loop stimulation strategies. Additionally, the platform includes an algorithm library with signal processing and machine learning methods to facilitate the development of new closed-loop DBS strategies.

Results: The platform can achieve low-latency feedback stimulation control with response times of 6.23 ± 0.85 ms and 6.95 ± 1.11 ms for animal and clinical experiments, respectively. It effectively removed stimulation artifacts and demonstrated flexibility in implementing new closed-loop DBS algorithms. The platform has integrated several typical closed-loop protocols, including threshold-adaptive DBS, amplitude-modulation DBS, dual-threshold DBS and neural state-dependent DBS.

Conclusions: This work provides a research tool for rapidly deploying innovative closed-loop strategies for translational research in both animal and clinical studies. The platform's capabilities in real-time data processing and low-latency control represent a significant advancement in translational DBS research, with potential implications for the development of more effective therapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurom.2024.10.012DOI Listing

Publication Analysis

Top Keywords

animal clinical
16
closed-loop
12
stimulation
12
closed-loop dbs
12
closed-loop stimulation
12
closed-loop deep
8
deep brain
8
brain stimulation
8
platform
8
innovative closed-loop
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!