The ventricular system and subarachnoid space are filled with cerebrospinal fluid, which plays a key role in the nervous system. This fluid is produced by the choroid plexus, an organ rich in ion transporters that precisely control the transport of specific ions into the cerebrospinal fluid thanks to tight junctions between the plexus cells; these prevent the passage of substances other than the transporters, thus allowing for precise control of the fluid composition. Cerebrospinal fluid production is based on a network of interrelationships between specific ion flows enabled by the numerous transporters. The fluid is cleaned and resorbed by the glymphatic system via multiple absorption pathways. Maintaining proper cerebrospinal fluid parameters is extremely important for proper brain function. Considering the fragility of the brain, even small fluctuations in cerebrospinal fluid composition can impair its condition. Therefore, to understand the nervous system, it is important to have thorough knowledge of the production, transport, and resorption mechanisms of cerebrospinal fluid. The aim of this paper is to summarize the current state of knowledge about the mechanisms of production, pathways of absorption and physiological values of cerebrospinal fluid parameters; it also discusses the role of the glymphatic system in maintaining fluid homeostasis, and the changes resulting from its dysfunction as result of trauma.

Download full-text PDF

Source
http://dx.doi.org/10.5603/fm.99964DOI Listing

Publication Analysis

Top Keywords

cerebrospinal fluid
32
fluid
12
cerebrospinal
8
fluid production
8
nervous system
8
fluid composition
8
glymphatic system
8
fluid parameters
8
system
5
morphological changes
4

Similar Publications

Narcolepsy type 1 (NT1) is a clinical syndrome defined by recurrent episodes of excessive daytime sleepiness (EDS), episodes of cataplexy, hypnagogic hallucinations, and sleep paralysis. Symptoms typically manifest in the second or third decade with another small peak in the fourth decade. In this report we describe the case of a 64-year-old woman presenting with new-onset visual hallucinations as the main complaint.

View Article and Find Full Text PDF

[Rapid Diagnosis of Central Nervous System Infections by Multiplex PCR Assay and the Viral Etiology in Children].

Mikrobiyol Bul

October 2024

University of Health Sciences, Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, Clinic of Pediatric Infectious Diseases, İzmir, Türkiye.

Central nervous system infections (CNS) are life-threatening infections in children, requiring urgent intervention and rapid diagnosis. In this study, we aimed to investigate the efficacy of syndromic tests in diagnosing CNS infections and the distribution of viral pathogens in pediatric patients. A total of 145 pediatric patients with a prediagnosis of CNS infection based on clinical findings by a pediatric infectious disease specialist were included in the study.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a common autoimmune disease that primarily affects young adults. In this condition, the immune system attacks the myelin sheath of nerve cells, leading to a variety of neurological symptoms. MS diagnosis often relies on the analysis of oligoclonal bands (OCBs), which involves detecting oligoclonal immunoglobulin G (IgG) bands in cerebrospinal fluid (CSF) and serum.

View Article and Find Full Text PDF

Background: Medical simulation is relevant for training medical personnel in the delivery of medical and trauma care, with benefits including quantitative evaluation and increased patient safety through reduced need to train on patients.

Methods: This paper presents a prototype medical simulator focusing on ocular and craniofacial trauma (OCF), for training in management of facial and upper airway injuries. It consists of a physical, electromechanical representation of head and neck structures, including the mandible, maxillary region, neck, orbit and peri-orbital regions to replicate different craniofacial traumas.

View Article and Find Full Text PDF

Single-cell transcriptomics applied to cerebrospinal fluid (CSF) for elucidating the pathophysiology of neurologic diseases has produced only a preliminary characterization of CSF immune cells. CSF derives from and borders central nervous system (CNS) tissue, allowing for comprehensive accounting of cell types along with their relative abundance and immunologic profiles relevant to CNS diseases. Using integration techniques applied to publicly available datasets in combination with our own studies, we generated a compendium with 139 subjects encompassing 135 CSF and 58 blood samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!