CEACAM1 in vascular homeostasis and inflammation.

Eur J Clin Invest

Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany.

Published: December 2024

Introduction: The glycoprotein Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. It is expressed in a variety of tissues including epithelial, immune, as well as endothelial cells, and is crucial to diverse physiological and pathological mechanisms. This review aims to provide a comprehensive understanding of CEACAM1's multifaceted roles in vascular biology and inflammatory processes.

Methods: Directed literature research was conducted using databases, such as PubMed, and relevant studies were categorized based on the physiological effects of CEACAM1.

Results: CEACAM1 plays a pivotal role in vascular homeostasis, particularly influencing the formation, maturation, and aging of blood vessels, as well as the endothelial barrier function. It supports endothelium-dependent vasodilation and nitric oxide formation, thus promoting vascular integrity and regulating blood pressure. Additionally, CEACAM1 is of emerging importance to vascular inflammation and its potential clinical consequences.

Conclusion: CEACAM1 is a crucial regulator of vascular homeostasis and inflammation with significant implications for cardiovascular health. Despite the lack of understanding of tissue-specific modulation and isoform-dependent mechanisms, CEACAM1 could be a promising therapeutic target for the prevention of cardiovascular disease in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646292PMC
http://dx.doi.org/10.1111/eci.14345DOI Listing

Publication Analysis

Top Keywords

vascular homeostasis
12
homeostasis inflammation
8
well endothelial
8
ceacam1
6
vascular
5
ceacam1 vascular
4
inflammation introduction
4
introduction glycoprotein
4
glycoprotein carcinoembryonic
4
carcinoembryonic antigen-related
4

Similar Publications

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

Background: The binding of endothelin-1 (ET-1) to endothelin type A receptor (ETAR) performs a critical action in pulmonary arterial smooth muscle cell (PASMC) proliferation leading to pulmonary vascular structural remodeling. More evidence showed that cystathionine γ-lyase (CSE)-catalyzed endogenous hydrogen sulfide (HS) was involved in the pathogenesis of cardiovascular diseases. In this study, we aimed to explore the effect of endogenous HS/CSE pathway on the ET-1/ETAR binding and its underlying mechanisms in the cellular and animal models of PASMC proliferation.

View Article and Find Full Text PDF

Cerebral aneurysms (CA) are a serious condition characterized by the bulging of a blood vessel in the brain, which can lead to rupture and life-threatening bleeding. The pathophysiology of CA involves complex processes, particularly inflammation and macrophage infiltration. Phoenixin-14 (PNX-14) is a neuropeptide with diverse biological effects, including roles in reproduction, energy homeostasis, and inflammation.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.

View Article and Find Full Text PDF

Systematical identification of regulatory GPCRs by single-cell trajectory inference reveals the role of ADGRD1 and GPR39 in adipogenesis.

Sci China Life Sci

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.

Adipogenesis is the healthy expansion of white adipose tissue (WAT), serving as a compensatory response to maintain metabolic homeostasis in the presence of excess energy in the body. Therefore, the identification of novel regulatory molecules in adipogenesis, specifically membrane receptors such as G protein-coupled receptors (GPCRs), holds significant clinical promise. These receptors can serve as viable targets for pharmaceuticals, offering potential for restoring metabolic homeostasis in individuals with obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!