Background: Alternative splicing is a fundamental mechanism in the post-transcriptional regulation of genes. The multifunctional transmembrane glycoprotein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes extensive alternative splicing to allow for tunable functions in cell signalling, adhesion and modulation of immune and metabolic responses. Splice isoforms that differ in their ectodomain and short or long cytoplasmic tail (CEACAM1-S/CEACAM1-L) have distinct functional roles. The mechanisms that regulate CEACAM1 RNA splicing remain elusive.

Methods: This narrative review summarizes the current knowledge of the mechanism and function of CEACAM1 splice isoforms. Historical perspectives address the biological significance of the glycosylated Ig domains, the variable exon 7, and phosphorylation events that dictate its signal transduction pathways. The use of small antisense molecules to target mis-spliced variable exon 7 is discussed.

Results: The Ig variable-like N domain mediates cell adhesion and immune checkpoint inhibitory functions. Gly and Tyr residues in the transmembrane (TM) domain are essential for dimerization. Calmodulin, Calcium/Calmodulin-dependent protein kinase II delta (CamK2D), Actin and Annexin A2 are binding partners of CEACAM1-S. Homology studies of the muCEACAM1-S and huCEACAM1-S TM predict differences in their signal transduction pathways. Hypoxia-inducible factor 1-α (HIF-1-α) induces alternative splicing to produce CEACAM1-S under limited oxygen conditions. Antisense small molecules directed to exon 7 may correct faulty expression of the short and long cytoplasmic tail splicing isoforms.

Conclusion: More pre-clinical and clinical studies are needed to elucidate the precise mechanisms by which CEACAM1 RNA splicing may be exploited to develop targeted interventions towards novel therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646291PMC
http://dx.doi.org/10.1111/eci.14350DOI Listing

Publication Analysis

Top Keywords

splice isoforms
12
alternative splicing
12
mechanism function
8
function ceacam1
8
ceacam1 splice
8
cell adhesion
8
short long
8
long cytoplasmic
8
cytoplasmic tail
8
ceacam1 rna
8

Similar Publications

In this article, we present an approach to maximizing the splicing regulatory properties of splice-switching oligonucleotide (SSO) designed to regulate alternative splicing of PKM pre-mRNA. The studied SSO interacts with the regulatory element in exon 10 of PKM pre-mRNA and contributes to a significant reduction of PKM2 level with a simultaneous increase of the PKM1 isoform. This SSO forms a duplex not only with the regulatory fragment of exon 10 but also with a similar RNA fragment of intron 9.

View Article and Find Full Text PDF

The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary.

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA () to facilitate polyploidization, maturation, and functional competence of hepatocytes.

View Article and Find Full Text PDF

TDP43 autoregulation gives rise to dominant negative isoforms that are tightly controlled by transcriptional and post-translational mechanisms.

Cell Rep

January 2025

Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA. Electronic address:

The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!