A novel scaffold for biofilm formation by soil microbes using iron-cross-linked alginate gels.

Biosci Biotechnol Biochem

Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan.

Published: December 2024

This study aimed to evaluate the suitability of alginate gels, specifically ferric-ion-cross-linked alginate (Fe-alginate) and calcium-ion-cross-linked alginate (Ca-alginate), as scaffolds for soil microbial attachment and biofilm formation in soil. Staining with crystal violet and observations with scanning electron microscopy showed that microorganisms formed biofilms on Fe-alginate surfaces in the soil. When the soil was incubated with Fe-alginate, microbial biomass, estimated by adenosine triphosphate content, increased not only in the Fe-alginate but also in the surrounding soil. The weight of Ca-alginate in the soil decreased with time owing to chemical dissolution. However, the weight of Fe-alginate in the soil did not decrease, likely because it was protected by the microbial biofilm that formed on its surface. These results demonstrate that the use of Fe-alginate, in contrast to Ca-alginate, as a scaffold may allow for more efficient use of soil microbial functions in agriculture and bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bbb/zbae197DOI Listing

Publication Analysis

Top Keywords

soil
9
biofilm formation
8
formation soil
8
alginate gels
8
soil microbial
8
fe-alginate
6
novel scaffold
4
scaffold biofilm
4
soil microbes
4
microbes iron-cross-linked
4

Similar Publications

Background And Aims: Fire-released seed dormancy (SD) is a key trait for successful germination and plant persistence in many fire-prone ecosystems. Many local studies have shown that fire-released SD depends on heat and exposure time, dose of smoke-derived compounds, SD class, plant lineage and the fire regime. However, a global quantitative analysis of fire-released SD is lacking.

View Article and Find Full Text PDF

Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.

View Article and Find Full Text PDF

Benggang (collapsing hill) erosion is one of the most serious ecological problems in the south of China. Understanding the relationship between Benggang erosion and landscape pattern is conducive to the study of Benggang occurrence and development from the perspective of landscape ecology, with great significance for Benggang prevention and ecological protection. We classified the Lanxi River Basin in Anxi County, Fujian Province into 32 small watersheds.

View Article and Find Full Text PDF

The construction of an ecological security pattern is crucial to maintain ecosystem health and stability, with great significance for regional sustainable development. Following the research paradigm of "ecological source areas-ecological resistance surfaces-ecological corridors", based on the index framework of "sensitivity-importance-connectivity", we identified the ecological source areas, generated the ecological resistance surface through graded weighting of underlying surface factors and point of interest (POI) method, determined the ecological corridor, pinch point, and obstacle area using circuit theory, and constructed the ecological security pattern of Guizhou Pro-vince. Results showed that the areas of extremely sensitive of rocky desertification and soil erosion and the areas of extremely important areas of water resources forming, soil and water conservation and biodiversity in Guizhou Pro-vince were generally small and distributed differently, accounting for 1.

View Article and Find Full Text PDF

Non-grain utilization of cultivated land threatens farmland ecological environment and soil health, which restricts grain production. To identify the key obstacle factors of cultivated soil under non-grain utilization, explore the changes of soil quality and function, and evaluate the effects of non-grain utilization on the health of farmland soil, we evaluated soil health of farmland under different non-grain utilization types (vegetables, bamboo-abandoned, nursery-grown plant-abandoned, nursery-grown plant-rice) by soil quality index and soil multifunctionality index method combined with sensitivity and resistance approaches. The results showed that soil organic carbon and total nitrogen (TN) in the bamboo-abandoned soil were 95.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!