Background: For use in specialized programs in the food, pharmaceutical, nutraceutical, cosmetic, and animal feed sectors, micro-algal biomass has been generated industrially. They can be grown in closed buildings, such as photobioreactors, or open structures. The utilization of biomass from microalgae for energy production is another crucial topic. Because of the world's diminishing petroleum sources and the greenhouse gas emissions from gasoline lines, it is now obvious that fuels generated from petroleum are not sustainable.

Results: Microalgae can produce a variety of unique, sustainable biofuels. These include biodiesel made from trans-esterification of microalgal lipids, bioethanol from fermentation of carbohydrates, methane created by anaerobic digestion of algal biomass, and biohydrogen produced by photobiological processes. The idea of using microalgae as a fuel source is not entirely novel.

Conclusion: This analysis emphasizes the significance of recent and noteworthy advancements in the industrial usage of microalgae, with an emphasis on their biotechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387356PMC
http://dx.doi.org/10.1016/j.jgeb.2024.100407DOI Listing

Publication Analysis

Top Keywords

biotechnological applications
8
marine microalgae
4
microalgae industrial
4
industrial biotechnological
4
applications review
4
review background
4
background specialized
4
specialized programs
4
programs food
4
food pharmaceutical
4

Similar Publications

Microalgae are photosynthetic microorganisms that have a rapid growth cycle and carbon fixation ability. They have diverse cellular structures, ranging from prokaryotic cyanobacteria to more complex eukaryotic forms, which enable them to thrive in a variety of environments and support biomass production. They utilize both photosynthesis and heterotrophic pathways, indicating their ecological importance and potential for biotechnological applications.

View Article and Find Full Text PDF

This study examines the chemical composition, antioxidant properties, and urease inhibitory effects of L. subsp. falezlez (Coss.

View Article and Find Full Text PDF

The black garden ant () is a widely distributed species across Europe, North America, and North Africa, playing a pivotal role in ecological processes within its diverse habitats. However, the microbiome associated with remains poorly investigated. In the present study, we isolated a novel species, , from the soil of the anthill.

View Article and Find Full Text PDF

Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes.

View Article and Find Full Text PDF

New Insights on Strain 1B Surface-Active Biomolecules: Gordofactin Properties.

Molecules

December 2024

Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.

Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!