Unbalanced diets, characterized by high fat or high salt content, are contributing to the obesity epidemic. Wheat bran, recognized as a promising by-product, has the potential to regulate metabolic disorders (MD) associated with obesity. Beta-glucan (BG) has multiple biological activities, but the effect of BG in wheat bran on MD remains unclear. Therefore, this study aimed to investigate the effects of wheat BG (WBG) on dyslipidemia and gut microbiota dysregulation in high fat (HF) or high fat-high salt (HFHS) fed mice. The results demonstrated that WBG significantly reduced the weight gain of mice fed with HF and HFHS diets (from 9.74 g to 2.43 g and from 6.74 g to 2.48 g, respectively). Additionally, WBG led to significant reductions in TG (26.26 % in HFG and 33.78 % in HFHSG) and TC (34.69 % in HFG) levels. The liver and adipocyte damage were also reduced after dietary supplementation with WBG. Moreover, WBG significantly reduced Firmicutes/Bacteroidetes ratio (9.52 at HF, 0.62 at HFG, 17.38 at HFHS and 0.61 at HFHSG). Concurrently, there was a reduction in acetic acid levels observed at rates of 26.11 % for HF and 32.18 % for HFHS. Additionally, WBG reduced the abundance of Coriobacteriaceae UCG-002, Romboutsia, Faecalibaculum, and Enterorhabdus that positively associated with obesity. These changes in gut microbiota may explain the anti-obesity and anti-hyperlipidemia effects of WBG. In conclusion, our findings suggest that WBG is a promising dietary supplement. Our research can provide new insights into the development of foods rich in dietary fiber.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138754 | DOI Listing |
Adv Mater
January 2025
School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China.
Wide-bandgap perovskite solar cells (WBG PSCs) have promising applications in tandem devices yet suffer from low open-circuit voltages (Vs) and less stability. To address these issues, the study introduces multifunctional nicotinamide derivatives into WBG PSCs, leveraging the regulation on photovoltaically preferential orientation and optoelectronic properties via diverse functional groups, e.g.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Effective modifications for the buried interface between self-assembled monolayers (SAMs) and perovskites are vital for the development of efficient, stable inverted perovskite solar cells (PSCs) and their tandem photovoltaics. Herein, an ionic-liquid-SAM hybrid strategy is developed to synergistically optimize the uniformity of SAMs and the crystallization of perovskites above. Specifically, an ionic liquid of 1-butyl-3-methyl-1H-imidazol-3-iumbis((trifluoromethyl)sulfonyl)amide (BMIMTFSI) is incorporated into the SAM solution, enabling reduced surface roughness, improved wettability, and a more evenly distributed surface potential of the SAM film.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratoty, Wuhan 430070, China.
Adv Sci (Weinh)
December 2024
School of Materials Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
Narrow-bandgap (NBG) Sn-Pb mixed perovskite solar cells (PSCs) represent a promising solution for surpassing the radiative efficiency of single-junction solar cells. The unique bandgap tunability of halide perovskites enables optimal tandem configurations of wide-bandgap (WBG) and NBG subcells. However, these devices are limited by the susceptibility of Sn in the NBG bottom cell to being oxidized to Sn, creating detrimental Sn vacancies.
View Article and Find Full Text PDFChemistry
November 2024
School of New energy and materials, Southwest Petroleum University, Chengdu, 610500, China.
High efficiency and stable wide-bandgap (WBG) perovskite solar cells (PSCs) are crucial for the development of perovskite-based tandem solar cells. However, the efficiency and stability of WBG PSCs are compromised by significant phase segregation and surface defects. In this study, we introduce a cation engineering strategy for WBG perovskite, employing a two-step sequential method that incorporates dimethylamine hydroiodide (DMAI) into the lead halide complex during the initial step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!