A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Static and dynamic in vitro colonic models reveal the spatiotemporal production of flavan-3-ol catabolites. | LitMetric

Static and dynamic in vitro colonic models reveal the spatiotemporal production of flavan-3-ol catabolites.

Free Radic Biol Med

Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands. Electronic address:

Published: December 2024

Flavan-3-ols are the most found flavonoid compounds in the human diet. Polymeric and monomeric flavan-3-ols reach the colonic region intact, where the gut microbiota utilizes them as substrates. In this research work, we investigated the pattern of colonic metabolites associated with flavan-3-ols, conducting a comprehensive analysis that combined (un)targeted metabolomics and in vitro colonic models. Firstly, the proposed flavan-3-ol metabolic pathway was investigated in-depth using a static in vitro model inoculated with different fecal donors. An apple, (-)-epicatechin, and procyanidin C1 were employed as feeding conditions. Small phenolic acids, such as phenylpropanoic acid and 3,4-dihydroxybenzoic acid, were positively associated with the apple feeding condition. In contrast, 5-(3',4'-dihydroxyphenyl)-γ-valerolactone and other specific early intermediates like phenylvaleric acids were positively associated with (-)-epicatechin. Secondly, by employing a dynamic in vitro simulator model of the human digestion system (SHIME), we reconstructed the flavan-3-ol metabolic pathway regionally. In the proximal colon region, we localized catabolites, such as 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, while in the distal region, we identified mainly small phenolics. Combining static and dynamic in vitro models, we observed differences in the release of flavan-3-ol catabolites, influenced by both the food structure (isolated compounds and a food matrix) and the colonic region. This study sheds light on the colonic catabolism of one of the main dietary (poly)phenols and localizes microbial metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.12.034DOI Listing

Publication Analysis

Top Keywords

dynamic vitro
12
static dynamic
8
vitro colonic
8
colonic models
8
flavan-3-ol catabolites
8
colonic region
8
flavan-3-ol metabolic
8
metabolic pathway
8
positively associated
8
colonic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!