A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Activated carbon and anthraquinone-2,6-disulfonate as electron shuttles for enhancing carbon and nitrogen removal from simultaneous methanogenesis, Feammox and denitrification system. | LitMetric

Activated carbon and anthraquinone-2,6-disulfonate as electron shuttles for enhancing carbon and nitrogen removal from simultaneous methanogenesis, Feammox and denitrification system.

Bioresour Technol

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China. Electronic address:

Published: December 2024

Anthraquinone-2,6-disulfonate (AQDS) and activated carbon (AC) were employed as exogenous electron shuttles (ESs) for enhancing the performance of an integrated simultaneous methanogenesis, Feammox, and denitrification (SMFD) system treating fish sludge. The addition of AQDS and AC led to an increased total nitrogen removal efficiency by 30.2 % and 66.5 %, an increased total chemical oxygen demand removal efficiency by 9.5 % and 24.5 %, and an improved methane yield by 5.2 % and 12.6 %, respectively. Regarding nitrogen removal, AQDS mainly facilitated NH-N oxidation into NO-N via Feammox, while AC facilitated both Feammox and denitrification. Regarding carbon removal, both ESs promoted the hydrolysis-acidification process via stimulating dissimilatory iron reduction and established direct interspecies electron transfer (DIET) between methanogens and syntrophic bacteria. Microbial analysis confirmed the enrichment of iron-reducing bacteria, denitrifiers, DIET-related methanogens and syntrophic partners in the presence of ESs. The study provides an ESs-assisted strategy for enhancing simultaneous nitrogen and carbon removal from high-strength wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131975DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
12
feammox denitrification
12
activated carbon
8
electron shuttles
8
simultaneous methanogenesis
8
methanogenesis feammox
8
increased total
8
removal efficiency
8
carbon removal
8
methanogens syntrophic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!