Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate prediction of influent parameters such as chemical oxygen demand (COD) and biochemical oxygen demand over five days (BOD) is crucial for optimizing wastewater treatment processes, enhancing efficiency, and reducing costs. Traditional prediction methods struggle to capture the dynamic variations of influent parameters. Mechanistic biochemical models are unable to predict these parameters, and conventional machine learning methods show limited accuracy in forecasting key water quality indicators such as COD and BOD. This study proposes a hybrid model that combines signal decomposition and deep learning to improve the accuracy of COD and BOD predictions. Additionally, a new dynamic feature selection (DFS) mechanism is introduced to optimize feature selection in real-time, reducing model redundancy and enhancing prediction stability. The model achieved R values of 0.88 and 0.96 for COD, and 0.75 and 0.93 for BOD across two wastewater treatment plants. RMSE and MAE values were significantly reduced, with decreases of 14.93% and 12.55% for COD at WWTP No. 5, and 20.89% and 20.40% for COD at WWTP No. 7. For BOD, RMSE and MAE decreased by 3.56% and 5.28% at WWTP No. 5, and by 10.06% and 10.20% at WWTP No. 7. These results highlight the effectiveness of the proposed model and DFS mechanism in improving prediction accuracy and model performance. This approach provides valuable insights for wastewater treatment optimization and broader time series forecasting applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.120615 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!