Iron oxides promote physicochemical stabilization of carbon despite enhancing microbial activity in the rice rhizosphere.

Sci Total Environ

Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; School of Environmental and Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK. Electronic address:

Published: December 2024

Rice rhizosphere soil is a hotspot of microbial activity and a complex interplay between soil abiotic properties, microbial community and organic carbon (C). The iron (Fe) plaque formation in the rice rhizosphere promotes Fe-bound organic C formation and increases microbial activity. Yet, the overall impact of Fe on C storage via physicochemical stabilization and microbial mineralization of rhizodeposits (rhizo-C) and soil organic C (SOC) in the rice rhizosphere remain unclear. We conducted a microcosm experiment using C-CO pulse labeling to grow rice (Oryza sativa L.) with four levels of α-FeOOH addition (Control, Fe-10 %, Fe-20 %, Fe-40 % w/w of α-FeOOH per total Fe in soil). This study aimed to evaluate the impact of Fe oxides on rhizo-C mineralization, the rhizosphere priming effect, and Fe-OM formation. Microbial community composition and localization of enzyme activities were also quantified through 16S rRNA sequencing and zymography. The hotspot area, as being indicated by zymography, increased by 20-50% in the presence of Fe compared to the soil without Fe addition. Despite being a hotspot, strong coprecipitation of Fe-OM in the rhizosphere promoted C immobilisation. Fe-20 % and Fe-40 % resulted in a 41 % and 33 % decrease of rhizodeposits derived C-CO emission and increased C stabilization mainly in 0.25-2 mm soil aggregates due to coprecipitation and aggregate formation with α-FeOOH. Moreover, Fe addition led to a dominance of Fe-oxidizing bacteria genera such as Pseudomonas, which fostered coprecipitation of Fe-OM formation. We highlight larger physicochemical stabilization of organic C by α-FeOOH addition despite raised hotspot area of microbial activity in the rice rhizosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.178019DOI Listing

Publication Analysis

Top Keywords

rice rhizosphere
20
microbial activity
16
physicochemical stabilization
12
α-feooh addition
12
activity rice
8
microbial community
8
fe-20 % fe-40 %
8
fe-om formation
8
hotspot area
8
addition despite
8

Similar Publications

Salt is a primary factor limiting the utilization of saline lands in coastal beach areas, with rhizosphere microorganisms playing a crucial role in enhancing crop stress resistance and exhibiting high sensitivity to environmental changes. Rice ( L.) is the preferred crop for reclaiming salinized soils.

View Article and Find Full Text PDF

Background: Mangrove plants growing in the high salt environment of coastal intertidal zones colonize a variety of microorganisms in the phyllosphere, which have potential salt-tolerant and growth-promoting effects. However, the characteristics of microbial communities in the phyllosphere of mangrove species with and without salt glands and the differences between them remain unknown, and the exploration and the agricultural utilization of functional microbial resources from the leaves of mangrove plants are insufficient.

Results: In this study, we examined six typical mangrove species to unravel the differences in the diversity and structure of phyllosphere microbial communities between mangrove species with or without salt glands.

View Article and Find Full Text PDF

Synthetic Microbial Community Isolated from Intercropping System Enhances P Uptake in Rice.

Int J Mol Sci

November 2024

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.

Changes in root traits and rhizosphere microbiome are important ways to optimize plant phosphorus (P) efficiency and promote multifunctionality in intercropping. However, whether and how synthetic microbial communities isolated from polyculture systems can facilitate plant growth and P uptake are still largely unknown. A field experiment was first carried out to assess the rice yield and P uptake in the rice/soybean intercropping systems, and a synthetic microbial community (SynCom) isolated from intercropped rice was then constructed to elucidate the potential mechanisms of growth-promoting effects on rice growth and P uptake in a series of pot experiments.

View Article and Find Full Text PDF

Aims: Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases of rice (Oryza sativa L.). The aim of this study was to investigate the biocontrol potential of rice rhizosphere actinomycetes against M.

View Article and Find Full Text PDF

Iron oxides promote physicochemical stabilization of carbon despite enhancing microbial activity in the rice rhizosphere.

Sci Total Environ

December 2024

Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; School of Environmental and Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK. Electronic address:

Rice rhizosphere soil is a hotspot of microbial activity and a complex interplay between soil abiotic properties, microbial community and organic carbon (C). The iron (Fe) plaque formation in the rice rhizosphere promotes Fe-bound organic C formation and increases microbial activity. Yet, the overall impact of Fe on C storage via physicochemical stabilization and microbial mineralization of rhizodeposits (rhizo-C) and soil organic C (SOC) in the rice rhizosphere remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!