Coastal wetland ecosystems play a key role in the global carbon cycle and climate mitigation. The land conversion of coastal wetlands to paddy fields, an increasingly common practice to feed the growing population, has been shown to dramatically stimulate the methane emissions of (CH). However, the knowledge about how such wetland conversion affects the methane oxidation, a key process regulating methane emissions from coastal wetlands, is nearly unknown. In this study, a space-for-time substitution method was employed to investigate the impact of the conversion of coastal wetlands (dominated by Phragmites or mangrove (Kandelia and Bruguiera)) to paddy fields on the methane oxidation process on the eastern coast of China. Our results showed that the average CH oxidation potential in the converted paddy soils significantly reduced by 28.4 % and 29.3 %, respectively, and the average abundance of methanotrophic pmoA gene decreased by 77.1 % and 81.9 %, respectively, compared to the original Phragmites and mangrove soils. Significant changes in the methanotrophic community composition were also found after converting Phragmites and mangrove wetlands to paddy fields. Structural equation modeling analysis suggested that the land conversion significantly affected the CH oxidation potential by changing the soil physicochemical properties (pH, ammonium content, and nitrate content) and methanotrophic abundance. Overall this study showed significant alterations in CH oxidation potential and community composition and abundance of methanotrophs caused by conversion of coastal wetlands to paddy fields, improving the knowledge of the underlying microbial mechanisms of land conversion on methane emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122962 | DOI Listing |
J Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
Animals (Basel)
December 2024
College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
In the context of global warming and intensified human activities, the loss and fragmentation of species habitats have been exacerbated. In order to clarify the trends in the current and future suitable wintering areas for hooded cranes (), the MaxEnt model was applied to predict the distribution patterns and trends of hooded cranes based on 94 occurrence records and 23 environmental variables during the wintering periods from 2015 to 2024. The results indicated the following.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK. Electronic address:
Heavy metal pollution is a growing environmental concern as it causes the degradation of wetlands by affecting the organisms at different trophic levels. Shorebirds typically feed on benthic invertebrates including polychaete worms, crustaceans and molluscs. Thus, the assessment of bioconcentration of heavy metals in shorebirds provides an insight into the extent of bioaccumulation of these hazardous metals in the upper trophic levels.
View Article and Find Full Text PDFWater Res
January 2025
Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!