Conversion of coastal wetlands to paddy fields substantially decreases methane oxidation potential and methanotrophic abundance on the eastern coast of China.

Water Res

Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China. Electronic address:

Published: December 2024

Coastal wetland ecosystems play a key role in the global carbon cycle and climate mitigation. The land conversion of coastal wetlands to paddy fields, an increasingly common practice to feed the growing population, has been shown to dramatically stimulate the methane emissions of (CH). However, the knowledge about how such wetland conversion affects the methane oxidation, a key process regulating methane emissions from coastal wetlands, is nearly unknown. In this study, a space-for-time substitution method was employed to investigate the impact of the conversion of coastal wetlands (dominated by Phragmites or mangrove (Kandelia and Bruguiera)) to paddy fields on the methane oxidation process on the eastern coast of China. Our results showed that the average CH oxidation potential in the converted paddy soils significantly reduced by 28.4 % and 29.3 %, respectively, and the average abundance of methanotrophic pmoA gene decreased by 77.1 % and 81.9 %, respectively, compared to the original Phragmites and mangrove soils. Significant changes in the methanotrophic community composition were also found after converting Phragmites and mangrove wetlands to paddy fields. Structural equation modeling analysis suggested that the land conversion significantly affected the CH oxidation potential by changing the soil physicochemical properties (pH, ammonium content, and nitrate content) and methanotrophic abundance. Overall this study showed significant alterations in CH oxidation potential and community composition and abundance of methanotrophs caused by conversion of coastal wetlands to paddy fields, improving the knowledge of the underlying microbial mechanisms of land conversion on methane emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122962DOI Listing

Publication Analysis

Top Keywords

coastal wetlands
20
paddy fields
20
conversion coastal
16
wetlands paddy
16
oxidation potential
16
methane oxidation
12
land conversion
12
methane emissions
12
phragmites mangrove
12
methanotrophic abundance
8

Similar Publications

Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.

View Article and Find Full Text PDF

Seasonal variation of microbial community and diversity in the Taiwan Strait sediments.

Environ Res

January 2025

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.

Article Synopsis
  • Human activities and ocean currents in the Taiwan Strait show seasonal variations, but how marine microbes respond to these changes under human and climate stress is not fully understood.
  • Using 16S rRNA gene amplicon sequencing, the study analyzed sediment samples and found distinct seasonal patterns in microbial diversity, with Proteobacteria and Desulfobacterota as dominant groups.
  • Key factors like iron concentrations, heavy metals, and temperature fluctuations significantly influenced microbial community structures, while certain core microbial groups and marker species could serve as indicators for monitoring the health of the Taiwan Strait ecosystem.
View Article and Find Full Text PDF

In the context of global warming and intensified human activities, the loss and fragmentation of species habitats have been exacerbated. In order to clarify the trends in the current and future suitable wintering areas for hooded cranes (), the MaxEnt model was applied to predict the distribution patterns and trends of hooded cranes based on 94 occurrence records and 23 environmental variables during the wintering periods from 2015 to 2024. The results indicated the following.

View Article and Find Full Text PDF

Bio-concentration of hazardous metals in migrant shorebirds in a key conservation reserve and adjoining areas on the west coast of India.

Ecotoxicol Environ Saf

January 2025

Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK. Electronic address:

Heavy metal pollution is a growing environmental concern as it causes the degradation of wetlands by affecting the organisms at different trophic levels. Shorebirds typically feed on benthic invertebrates including polychaete worms, crustaceans and molluscs. Thus, the assessment of bioconcentration of heavy metals in shorebirds provides an insight into the extent of bioaccumulation of these hazardous metals in the upper trophic levels.

View Article and Find Full Text PDF

Photic versus aphotic production of organohalogens from native versus invasive wetland plants-derived dissolved organic matter.

Water Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China. Electronic address:

Article Synopsis
  • The study explores the less understood process of natural organohalogen formation in dark conditions (aphotic) compared to more well-known light-driven (photochemical) processes, particularly focusing on two types of dissolved organic matter (DOM) from wetland plants.
  • It finds that the invasive plant Spartina alterniflora (SA-DOM) is more prone to photochemical halogenation due to its higher aromatic content, while Phragmites australis (PA-DOM) produces more natural organohalogens (NOHs) during dark reactions.
  • The research highlights the importance of dissolved oxygen levels and suggests that both photochemical and aphotic pathways contribute significantly to NOH formation, making them relevant under varying environmental conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!