Background: Diabetic keratopathy is a prevalent but sometimes ignored visual condition in diabetic patients, which significantly affects patients with diabetes mellitus (DM) in terms of their visual acuity. Exosomes regulate diabetes-related conditions like diabetic keratopathy (DK) by secreting their components into the body.

Objective: Aim to investigate the effect and mechanism of mesenchymal stem cell (MSC)-derived exosome miR-125a-5p on DK.

Methods: Transmission electron microscopy, along with nanoparticle tracking analysis, was used to determine the morphology and size of exosomes. To evaluate cell viability, proliferation, and migration, Western blotting and RT-qPCR methods were used. CCK-8, cell cloning, and scratch assays were used to measure protein levels and mRNA expression.

Results: High glucose treatment of corneal epithelial cells weakened cell viability, proliferation and migration, and the level of miR-125a-5p was significantly reduced. It has been proposed that elevated levels of miR-125a-5p could enhance cell viability, proliferation, and migration, can inhibit endoplasmic reticulum stress induced by high glucose, which is the same as the effect of endoplasmic reticulum stress inhibitors.

Conclusion: Mouse bone marrow MSC-derived exosome miR-125a-5p repairs corneal epithelial cell viability and proliferation as well as migration ability to improve DK by inhibiting high glucose-induced endoplasmic reticulum stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2024.102669DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
16
reticulum stress
16
cell viability
16
viability proliferation
16
diabetic keratopathy
12
proliferation migration
12
mesenchymal stem
8
msc-derived exosome
8
exosome mir-125a-5p
8
high glucose
8

Similar Publications

Blue Light Damages Retinal Ganglion Cells Via Endoplasmic Reticulum Stress and Autophagy in Chickens.

Invest Ophthalmol Vis Sci

January 2025

Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China.

Purpose: Because chickens have excellent light perception properties, this study focused on investigating whether monochromatic light can cause photodamage in chicken retinal ganglion cells (RGCs).

Methods: Post-hatching day chickens were exposed to four different light-emitting diode light environments for five weeks, respectively, monochromatic blue light (480 nm), green light (560 nm), red light (660 nm), or white light (6000 K). The mechanisms through which monochromatic light influences the structure of the chicken retina were analyzed by detecting the morphological structure of the retina, gene and protein expression levels, and the ultrastructure of the optic nerve.

View Article and Find Full Text PDF

Introduction: In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization.

Areas Covered: 1.

View Article and Find Full Text PDF

Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B.

View Article and Find Full Text PDF

NADPH-Independent Fluorescent Probe for Live-Cell Imaging of Heme Oxygenase-1.

ACS Sens

January 2025

Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430079, China.

Heme oxygenase-1 (HO-1) catalyzes heme degradation on the consumption of NADPH and molecular oxygen. As an inducible enzyme, HO-1 is highly induced in various disease states, including cancer. Currently, two fluorescent probes for HO-1 have been designed based on the catalytic activity of HO-1, in which the probes serve as a substrate, so NADPH is required to enable the detection.

View Article and Find Full Text PDF

Vacuolar H-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor.

J Cell Physiol

January 2025

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!