Modulation of iron metabolism by new chemicals interacting with the iron regulatory system.

Redox Biol

Cyclica Inc., 207 Queens Quay W Suite 420, Toronto, ON, M5J 1A7, Canada.

Published: November 2024

Despite the vital role of iron and vulnerability of iron metabolism in disease states, it remains largely unknown whether chemicals interacting with cellular proteins are responsible for perturbation of iron metabolism. We previously demonstrated that cisplatin was an inhibitor of the iron regulatory system by blocking IRP2 (iron regulatory protein 2) binding to an iron-responsive element (IRE) located in the 3'- or 5'-UTR (untranslated region) of key iron metabolism genes such as transferrin receptor 1 (TfR1) and ferritin mRNAs. To guide the development of new chemical probes to modulate the IRP-IRE regulatory system, we used an artificial intelligence (AI)-based ligand design and screened a chemical library composed of cysteine-reactive warheads. Using wild type and mutant IRE-luciferase reporter cells, we identified new IRP-IRE inhibitors such as V004-0872 harboring chloroacetamide, while its analog V011-6261 with chloropropanamide completely lost the inhibitory activity. V004-0872 inhibited the human IRP2 via Cys512 and caused decreased iron levels through reciprocal TfR1 downregulation and ferritin upregulation. V004-0872 increased production of mitochondrial reactive oxygen species (ROS) and exhibited cytotoxicity that was inhibited by N-acetyl cysteine but not the ferroptosis inhibitor ferrostatin-1. Furthermore, we found that widely used haloketone protease inhibitors and acetamide herbicides inhibit the IRP-IRE system. Since IRP2 overexpression is responsible for iron excess conditions to promote growth of several cancers and exacerbation of iron-overload diseases, these results and new compounds lay the groundwork for new reagents and strategies to limit the availability of iron and oxidative stress in iron-overloaded disease conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.redox.2024.103444DOI Listing

Publication Analysis

Top Keywords

iron metabolism
16
iron regulatory
12
regulatory system
12
iron
10
chemicals interacting
8
modulation iron
4
metabolism
4
metabolism chemicals
4
interacting iron
4
regulatory
4

Similar Publications

Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.

View Article and Find Full Text PDF

Heme oxygenase 1 (HO-1), an enzyme involved in heme catabolism, has been shown upregulated in microglia cells and plays a critical roles in neurological damages after intracerebral hemorrhage (ICH). However, the mechanisms by which HO-1 mediates the neuronal damages are still obscure. Here, our findings demonstrate that HO-1 over-expression exacerbates the pro-inflammatory response of microglia and induces neuronal ferroptosis through promoting intracellular iron deposition in the ICH model both in vitro and in vivo.

View Article and Find Full Text PDF

Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.

View Article and Find Full Text PDF

Deciphering the role of the MALT1-RC3H1 axis in regulating GPX4 protein stability.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.

Ferroptosis, a unique form of iron-dependent cell death triggered by lipid peroxidation accumulation, holds great promise for cancer therapy. Despite the crucial role of GPX4 in regulating ferroptosis, our understanding of GPX4 protein regulation remains limited. Through FACS-based genome-wide CRISPR screening, we identified MALT1 as a regulator of GPX4 protein.

View Article and Find Full Text PDF

Molecular basis of hemoglobin binding and heme removal in .

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095.

To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!