A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-lasting chemiluminescence-based portable biosensor for POCT of food contaminant azodicarbonamide. | LitMetric

Long-lasting chemiluminescence-based portable biosensor for POCT of food contaminant azodicarbonamide.

Talanta

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China; Dongguan University of Technology, School of Life and Health Technology, Dongguan, 523808, China. Electronic address:

Published: December 2024

Azodicarbonamide (ADA) in flour products is easily converted to semicarbazide which greatly threatens human health. Herein, a long-lasting chemiluminescence (CL)-based biosensor was developed for quantitative point-of-care testing (POCT) of ADA. The threonine (Thr)-functionalized Cu-hemin MOFs (Cu-hemin@Thr) could induce persistent CL of luminol with excellent stability. The CL intensity was related to the competition reaction among ADA and a composite of glutathione-silver ions (GSH-Ag). In the presence of ADA, GSH is oxidized to glutathione disulfide (GSSG), which breaks the coordination between Ag and GSH. The CL of the sensing system is then decreased which is expected to be used for ADA detection. By combining a homemade portable device as a detector and a smartphone as an analyzer, quantitative POCT of ADA was successfully achieved. The limit of detection was 0.562 μM (0.065 ppm), which is much lower than the maximum permissible concentration of ADA (45 ppm) in flour extract. The developed strategy demonstrated quantitative POCT capabilities along with advantages of low cost, excellent selectivity, and repeatability, presenting great potential application in food safety and environment monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.127319DOI Listing

Publication Analysis

Top Keywords

poct ada
8
quantitative poct
8
ada
7
long-lasting chemiluminescence-based
4
chemiluminescence-based portable
4
portable biosensor
4
poct
4
biosensor poct
4
poct food
4
food contaminant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!