This study addresses the challenge of enhancing ferroptosis efficacy for tumor therapy, particularly the limited therapeutic efficiency of current inducers due to tumor microenvironment constraints. Herein, we developed a hollow ultrasound-triggered ZnFeO-BiMoO (ZB) S-scheme heterojunction loaded with artesunate (ART) to overcome these limitations. The ZB heterojunction with a particle size of ∼250 nm efficiently separates electron-hole pairs under ultrasound (US), promoting the generation of reactive oxygen species (ROS). The photodynamic effect of ZB further boosts ROS production, while ART, controlled-released by phase change materials under laser/US stimulation, enhances ROS production via Fe-mediated decomposition. This triple-enhanced strategy accumulates lipid peroxidation (LPO), significantly improving ferroptosis effects with a tumor suppression rate of 94.3 %. Moreover, ZB enables multimodal imaging and stimulates antitumor immunity, demonstrating its potential as a diagnostic and therapeutic agent. Our findings demonstrate the potential of this ZB@ART system in advancing ferroptosis-based tumor therapies, inspiring future designs of efficient ferroptosis inducers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.12.063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!