Environmental metal mixtures can cause combined neurotoxicity, but the underlying mechanism remains unclear. Mitochondria are crucial for energy metabolism in the nervous system, and their dysfunction leads to neurodegeneration. Zinc (Zn) is a coenzyme of many mitochondrial enzymes that controls mitochondrial function. This study investigated the role of Zn in the neurotoxicity induced by Mn + Pb and Pb + As mixtures. Zn supplementation improved the survival rate and learning ability of Caenorhabditis elegans following their exposure to mixtures of Mn + Pb and Pb + As by enhancing their mitochondrial morphology, membrane potential, and respiratory chain. Similarly, in HT22 cells, Zn mitigated the decrease in cellular activity and increase in apoptosis induced by the Mn + Pb and Pb + As mixtures by improving mitochondrial morphology and function. Mechanistically, Zn activated the PINK1 and MFN-2/OPA-1 pathways, promoting mitophagy and mitochondrial fusion. However, inhibition of mitophagy reversed the protective effect of Zn, indicating its reliance on mitophagy for neuroprotection. Our study demonstrated that Zn alleviates the combined neurotoxicity of Mn + Pb and Pb + As mixtures by enhancing mitophagy and mitochondrial fusion, suggesting that Zn supplementation is a potential treatment for metal-induced neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-024-04648-wDOI Listing

Publication Analysis

Top Keywords

mn + pb pb + as
16
combined neurotoxicity
12
mitophagy mitochondrial
12
mitochondrial fusion
12
pb + as mixtures
12
metal mixtures
8
induced mn + pb
8
mitochondrial morphology
8
mitochondrial
7
mixtures
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!