Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The invasive seaweed Rugulopteryx okamurae, native to East Asia, is spreading rapidly along the western Mediterranean and southern Portugal, severely affecting coastal biodiversity, ecosystem structure, and economic sectors such as fisheries and tourism. This study examined the nutrient uptake kinetics of R. okamurae, including ammonium, nitrate, urea, amino acids, and phosphate, and their role in nitrogen and phosphorus budgets based on laboratory growth rates. R. okamurae demonstrated the highest uptake for ammonium (V = 57.95 μmol · g DW · h), followed by urea (7.74 μmol · g DW · h), nitrate (5.37 μmol · g DW · h), and amino acids (3.71 μmol · g DW · h). The species showed higher uptake affinity for urea (α = 1.8), which accounted for 70% of nitrogen uptake. Phosphate uptake was low, and total nitrogen uptake exceeded growth requirements. These findings suggest that R. okamurae relies on organic nitrogen (urea) and may guide toward effective management strategies to mitigate its spread in coastal ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpy.13534 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!