Protein-O-mannosylation (POM) is a form of O-glycosylation that is ubiquitous and has been studied extensively throughout in fungi and animals. The key glycosyltransferase, protein O-mannosyltransferase (PMT), a member of family GT-39, is also found in over 3,800 bacterial genomes but has only been minimally examined from prokaryotes. In prokaryotes POM has only been investigated in terms of pathogenicity (in Mycobacterium tuberculosis) even though there are far more non-pathogenic bacteria that appear to carry out POM. To date, there is no consensus on what benefit POM imparts to the non-pathogenic bacteria that can perform it. Through the generation of a POM deficient mutant of Corynebacterium glutamicum - a widely utilized and known protein O-mannosylating actinobacteria - this work shows that even closely related actinobacterial GT-39 s (the enzymes responsible for the initiation of POM) can have different substrate specificities for targets of POM. Moreover, presented here is evidence that POM does not only occur in a SEC-dependent manner; POM also occurs with TAT and non-SEC secreted substrates in a specific and likely tightly regulated manner. Together these results highlight the need for further biochemical characterization of POM in these and other bacterial species to help elucidate the true nature of its biological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727336PMC
http://dx.doi.org/10.1093/glycob/cwae095DOI Listing

Publication Analysis

Top Keywords

pom
10
non-pathogenic bacteria
8
differential substrate
4
substrate preferences
4
preferences actinobacterial
4
actinobacterial protein
4
protein o-mannosyltransferases
4
o-mannosyltransferases alteration
4
alteration protein-o-mannosylation
4
protein-o-mannosylation choice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!