The global dependency on the depleted fossil fuels has led to the quest for acquiring alternative energy sources. Different types of waste material are generated at a high rate and tapping into their use for greener, alternative energy production is an option. The mesophilic anaerobic co-digestion of fruit and vegetable waste and wastewater treatment plant sewage sludge experiments were conducted using ultrasonic pretreated substrates. Sonication exposure times from 0 to 45 min were selected for the experiments. An automatic methane potential test system (BMP) was used to determine the production rate of biomethane of the fruit and vegetables waste containing 60% fruit and 40% vegetables. The highest cumulative methane production of 238 mL g VS was achieved at sonication time exposure of 45 min. It was observed that an increase in ultrasonic sonication exposure time, improved methane yield. The resulting experimental data was fitted with the modified Gompertz, co-digestion modified Gompertz, original Richards, modified Richards and co-digestion modified Richards models. IBM SPSS Statistics software was used for curve fitting and the estimation of the models' kinetic parameters. The modified Gompertz and Richards models showed higher goodness fit, both with of 0.93 and modified Richards models did not produce a good fit for the data, with of 0.7. The developed co-digestion models considered a combination of substrates that were easily digested as well as complex substrates that required multiple steps of digestion. The results show that the co-digestion modified Gompertz model had a goodness of fit of 0.98. Co-digestion modified Richard's model perfectly fit the experimental data, with of 1. Both the co-digestion modified models are recommended due to their fitting performance. Fruit and vegetable waste comprise multiple substrates including simple sugars that digest readily and much more complex cellulose substrates that require more steps to digest and requiring the second step of digestion after undergoing hydrolysis. Both models took that into account. The aim of this study was to evaluate the suitability of the Gompertz and Richards model in the co-digestion of fruit and vegetables waste with sludge, as well as to develop co-digestion models for the substrates at hand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2024.2431399 | DOI Listing |
Bioresour Technol
December 2024
Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 201804, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. Electronic address:
This study was designed to explore the key impact of Proteinase K (PK) on every step of anaerobic co-digestion. The results of step-by-step experiments indicated that PK promoted the hydrolysis of biodegradable plastic by initiating self-hydrolysis reactions, directly promoting the hydrolysis step of anaerobic co-digestion. Subsequently, PK indirectly promoted the acidogenesis and acetogenesis steps by impacting the proliferation of acid-producing bacteria.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
December 2024
Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa.
The global dependency on the depleted fossil fuels has led to the quest for acquiring alternative energy sources. Different types of waste material are generated at a high rate and tapping into their use for greener, alternative energy production is an option. The mesophilic anaerobic co-digestion of fruit and vegetable waste and wastewater treatment plant sewage sludge experiments were conducted using ultrasonic pretreated substrates.
View Article and Find Full Text PDFBioresour Technol
June 2024
Laboratory for Bioresource Recovery, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
This study aims to analyse the potential availability of essential metals including as Co, Fe, Ni, Zn, Mn, and Cu and non-essential metals such as Pb, Cr, and Cd within anaerobic mono- and co-digestion of pig manure and maize. The metals partitioning was determined using the Modified BCR (European Community Bureau of Reference) sequential extraction at defined intervals over a 45-days period, correlating changes in metals speciation with key digestion variables. The findings revealed that Cr, Cu, Fe, and Pb were predominantly associated with the oxidisable fraction, while Zn, Mn, and Cd were potentially available in both processes.
View Article and Find Full Text PDFBioresour Technol
June 2024
Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P. R. China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China; Key Laboratory of Rural Toilet and SewageTreatment Technology, Ministry of Agricultureand Rural Affairs, Tongji University, Shanghai 201804, P. R. China; Shanghai Research Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China. Electronic address:
A modified biodegradable plastic (PLA/PBAT) was developed by through covalent bonding with proteinase K, porcine pancreatic lipase, or amylase, and was then investigated in anaerobic co-digestion mixed with food waste. Fluorescence microscope validated that enzymes could remain stable in modified the plastic, even after co-digestion. The results of thermophilic anaerobic co-digestion showed that, degradation of the plastic modified with Proteinase K increased from 5.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2024
Ph.D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taichung, Taiwan.
The co-digestion of untreated Napier grass (NG) and industrial hydrolyzed food waste (FW) was carried out in the batch reactor to investigate the effect of substrate ratios on biogas production performance. Two-stage anaerobic digestion was performed with an initial substrate concentration of 5 g VS/L and a Food to Microorganism Ratio (F/M) of 0.84.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!