Sex hormone signaling declines during aging, from early midlife through menopause, as a consequence of reduced circulating estrogens and decreased receptiveness to these hormones in target tissues. Estrogens preserve energy homeostasis and promote metabolic health via coordinated and simultaneous effects throughout the brain and body. Age-associated loss of estrogen production during menopause has been implicated in a higher risk for metabolic diseases and increased mortality. However, it remains unclear whether age-associated changes in homeostasis are dependent on reduced estrogen signaling during menopause. Although menopausal hormone therapies containing estrogens can alleviate symptoms, concerns about the risks involved have contributed to a broad decline in the use of these approaches. Non-hormonal therapies have emerged that target tissues or pathways with varying levels of selectivity, reducing risk. We summarize here the broad effects of estrogen loss on homeostasis during menopause, current and emerging therapies and opportunities for understanding homeostatic disruptions associated with menopause.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s43587-024-00767-0 | DOI Listing |
J Clin Med
January 2025
2nd Chair and Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
Genitourinary Syndrome of Menopause (GSM) is a prevalent condition in postmenopausal women characterized by symptoms such as vaginal dryness, itching, and urinary tract issues due to declining estrogen levels. Despite its widespread impact on quality of life, GSM often remains underdiagnosed and without effective treatment. This study assessed the long-term efficacy of fractional CO laser treatment in alleviating GSM symptoms in perimenopausal women.
View Article and Find Full Text PDFNutrients
December 2024
Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
: Fructus (AOF) is a medicinal and edible resource that holds potential to ameliorate hyperuricemia (HUA), yet its mechanism of action warrants further investigation. : We performed network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments to investigate the potential action and mechanism of AOF against HUA. : The results indicate that 48 potential anti-HUA targets for 4 components derived from AOF were excavated and predicted through public databases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil.
Menopause occurs due to the depletion of the ovarian reserve, leading to a progressive decline in estrogen (E2) levels. This decrease in E2 levels increases the risk of developing several diseases and can coexist with chronic kidney disease (CKD). Arterial hypertension (AH) is another condition associated with menopause and may either contribute to or result from CKD.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany.
Int J Mol Sci
December 2024
D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia.
In the present study, we aimed to investigate intratumoral karyotype diversity as well as the estrogen/progesterone effect on the cytogenetic profile of uterine leiomyomas (ULs). A total of 15 UL samples obtained from 15 patients were cultured in the media supplemented with estrogen and/or progesterone and without adding hormones. Conventional cytogenetic analysis of culture samples revealed clonal chromosomal abnormalities in 11 out of 15 ULs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!