A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulating the Coverage of Adsorbed Hydrogen via Hydrogen Spillover Enables Selective Electrocatalytic Hydrogenation of Phenol to Cyclohexanone. | LitMetric

AI Article Synopsis

  • Selective electrocatalytic hydrogenation (ECH) of phenol can produce cyclohexanone, an important industrial feedstock, but high selectivity and faradaic efficiency (FE) have been difficult to achieve due to issues like over-hydrogenation.
  • The study introduces a TiO-supported Pt catalyst that utilizes the hydrogen spillover effect to optimize hydrogen species coverage, leading to a high selectivity of 94% and a FE of 63% for cyclohexanone production.
  • Findings demonstrate that manipulating hydrogen spillover not only improves performance for cyclohexanone but also applies to other reducible metal oxides, offering a new approach for enhancing selectivity in electrocatalysis.

Article Abstract

Selective electrocatalytic hydrogenation (ECH) of phenol is a sustainable route to produce cyclohexanone, an industrially important feedstock for polymer synthesis. However, attaining high selectivity and faradaic efficiency (FE) for cyclohexanone remain challenging, owning to over-hydrogenation of phenol to cyclohexanol and competition of hydrogen evolution reaction (HER). Herein, by employing hydrogen spillover effect, we modulate adsorbed hydrogen species (H) coverage on Pt surface via migration to TiO in an anatase TiO-supported Pt catalyst. In ECH of phenol, a high selectivity (94 %) and good FE (63 %) for cyclohexanone are obtained, showing more advantageous performance compared with previous reports. Cyclic voltammetry (CV) tests and electrochemical Raman spectroscopy reveal that H migrated from Pt to TiO. We propose that TiO-induced hydrogen spillover contributes to low H coverage over Pt, which effectively hinders over-hydrogenation of cyclohexanone and HER. We establish a scaling relationship between the intensity of hydrogen spillover and cyclohexanone selectivity by varying the types of anatase TiO, and show the universality of the strategy over other reducible metal oxides as the support (rutile TiO, CeO and WO). This work showcases an effective strategy for tuning hydrogenation selectivity in electro-catalysis, by taking advantage of thermo-catalytically well-documented hydrogen spillover effect.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202419178DOI Listing

Publication Analysis

Top Keywords

hydrogen spillover
20
hydrogen
8
adsorbed hydrogen
8
selective electrocatalytic
8
electrocatalytic hydrogenation
8
ech phenol
8
high selectivity
8
cyclohexanone
6
spillover
5
modulating coverage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: