A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

"Intrinsic disorder-protein modification-LLPS-tumor" regulatory axis: From regulatory mechanisms to precision medicine. | LitMetric

"Intrinsic disorder-protein modification-LLPS-tumor" regulatory axis: From regulatory mechanisms to precision medicine.

Biochim Biophys Acta Rev Cancer

Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China. Electronic address:

Published: December 2024

Liquid-Liquid Phase Separation (LLPS) is an important mechanism for the formation of functional droplets. Protein modification is an important pathway to regulate LLPS, in which series of modifying groups realize dynamic regulation by changing the charge and spatial resistance of the modified proteins. Meanwhile, uncontrolled protein modifications associated with LLPS dysregulation are highly correlated with tumorigenesis and development, suggesting the existence of a potential regulatory axis between the three. In this review, we pioneered "protein modification-LLPS-tumor" regulatory axis and summarized protein modifications that regulate LLPS in cancer cells (including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, lactate, ADP-ribosylation, O-glycosylation, and acylation) and their associated modification mechanisms. Finally, we outline advances in precision medicine based on this regulatory axis. The aim of this review is to expand the understanding of protein modifications regulating LLPS under normal or abnormal cellular conditions and to provide possible ideas for precision therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbcan.2024.189242DOI Listing

Publication Analysis

Top Keywords

regulatory axis
16
protein modifications
12
modification-llps-tumor" regulatory
8
precision medicine
8
regulate llps
8
regulatory
5
llps
5
"intrinsic disorder-protein
4
disorder-protein modification-llps-tumor"
4
axis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!