Quantum State Transfer between Superconducting Cavities via Exchange-Free Interactions.

Phys Rev Lett

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.

Published: November 2024

We propose and experimentally demonstrate a novel protocol for transferring quantum states between superconducting cavities. This approach utilizes continuous two-mode squeezing interactions to generate entanglement without the exchange of any carrier photons. In contrast to the discrete operations of entanglement and Bell-state measurement in quantum teleportation, our scheme is symmetric and continuous. We experimentally realize coherent and bidirectional transfer of arbitrary quantum states, including bosonic quantum error correction codes. Our results offer new insights into the quantum state transfer and quantum teleportation. In particular, our demonstration validates a new approach to realize quantum transducers and might find applications in a wide range of physical platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.220801DOI Listing

Publication Analysis

Top Keywords

quantum
8
quantum state
8
state transfer
8
superconducting cavities
8
quantum states
8
quantum teleportation
8
transfer superconducting
4
cavities exchange-free
4
exchange-free interactions
4
interactions propose
4

Similar Publications

"Assembly Theory" in Life Origin Models: A Critical Review.

Biosystems

December 2024

ProtoBioCybernetics & Protocellular Metabolomics, The Gene Emergence Project, The Origin Of Life Science Foundation, Inc. Electronic address:

Any homeostatic protometabolism would have required orchestration of disparate biochemical pathways into integrated circuits. Extraordinarily specific molecular assemblies were also required at the right time and place. Assembly Theory conflated with its cousins-Complexity Theory, Chaos theory, Quantum Mechanics, Irreversible Nonequilibrium Thermodynamics and Molecular Evolution theory- collectively have great naturalistic appeal in hopes of their providing the needed exquisite steering and controls.

View Article and Find Full Text PDF

Additive CHARMM Force Field for Pterins and Folates.

J Comput Chem

January 2025

Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut polytechnique de Paris, Palaiseau, France.

Folates comprise a crucial class of biologically active compounds related to folic acid, playing a vital role in numerous enzymatic reactions. One-carbon metabolism, facilitated by the folate cofactor, supports numerous physiological processes, including biosynthesis, amino acid homeostasis, epigenetic maintenance, and redox defense. Folates share a common pterin heterocyclic ring structure capable of undergoing redox reactions and existing in various protonation states.

View Article and Find Full Text PDF

An irreversible thermodynamic model of pre-biological small circular molecular dissipative structures inside vacuoles on the Archean Ocean surface.

Biosystems

December 2024

Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, México.

A prebiotic model, based in the framework of thermodynamic efficiency loss from small dissipative eukaryote organisms [1-3], is developed to describe the maximum possible concentration of solar power to be dissipated on topological circular molecules structures encapsulated in lipid-walled vacuoles, which floated in the Archean oceans. By considering previously, the analysis of 71 species examined by covering 18 orders of mass magnitude from the Megapteranovaeangliae to Saccharomyces cerevisiae[2], suggest that in molecular structures of smaller masses than any living being known nowadays, the power dissipation must be directly proportional to the power of the photons of solar origin that impinge them to give rise to the formation of more complex self-assembled molecular structures at the prebiotic stage by a quantum mechanics model of resonant photon wavelength excitation. The analysis of 12 circular molecules (encapsulated in lipid-walled vacuoles) relevant to the evolution of life on planet Earth such as the five nucleobases, and some aromatic molecules as pyrimidine, porphyrin, chlorin, coumarin, xanthine, etc.

View Article and Find Full Text PDF

Development of anticoincidence detector specializing in small-angle Compton scattering gamma rays for boron neutron capture therapy.

Appl Radiat Isot

December 2024

Division of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.

A novel anticoincidence detector is proposed for the measurement of 478 keV gamma radiation for evaluation of boron neutron capture therapy. The Compton continuum around the target photopeak position is effectively suppressed by measuring only the Compton gamma rays scattered at small angles from the primary detector. A numerical evaluation using Monte Carlo simulations estimated an 80% reduction in counts, and the developed prototype detector showed 4% suppression of the Compton continuum of cobalt-60 gamma rays.

View Article and Find Full Text PDF

In this study, the interaction mechanism between Si quantum dots (SiQDs) and bovine serum albumin (BSA), as well as the conformational and functional alterations of BSA, were rigorously investigated via multispectral techniques and dynamic light scattering analysis. van der Waals forces and hydrogen bonding, as well as an exothermic reaction and a decrease in entropy, were the primary forces involved in the binding of SiQDs to BSA. In the binding process, SiQDs exhibit preferential proximity to Site I over other potential binding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!