The integration of photocatalytic and photothermal materials with oil-water separation membranes marks a significant advancement in sustainable separation technologies. These hybrid membranes exhibit exceptional functionalities, including resistance to oil fouling, self-cleaning, antibacterial properties, and reduced oil viscosity. Based on their reaction mechanisms, current photocatalytic and photothermal membranes are categorized into four types, i.e., photocatalytic membranes, photo-Fenton membranes, PMS-assisted photocatalytic membranes, and photothermal membranes. Under light irradiation, photocatalytically functionalized membranes generate reactive oxygen species (ROS) that degrade organic pollutants and inactivate bacteria on the membrane surfaces, enabling in-situ cleaning and regeneration. In addition to the above benefits, photothermal membranes achieve reduction of oil viscosity for higher membrane permeation and removal of light oil from membrane surfaces through light-induced heating. This review first explores the mechanisms underlying light-driven advanced oxidation processes (AOPs) and photothermal effects, followed by an in-depth discussion on the fabrication methods of these membranes. Additionally, the applications of photocatalytic and photothermal membranes in oil-water separation are examined, with an emphasis on how the photocatalytic and photothermal materials contribute to membrane functionality. Finally, this review presents the challenges currently faced by photocatalytic and photothermal membranes and outlines future research directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122919 | DOI Listing |
Int J Biol Macromol
December 2024
College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Taizhou, Zhejiang 318000, PR China. Electronic address:
Magnetic chitosan-based materials with good adsorption-photocatalysis and magnetic properties have great prospect in wastewater treatment. In this paper, a floating magnetic molybdenum disulfide/NiFeO/chitosan integrated melamine sponges (m-MoS/CS@MS) was fabricated using chitosan as absorbent and adhesive, MoS and NiFeO as photocatalysts, and melamine sponge as support material. The m-MoS/CS@MS has a rich light-water-air-material interaction interface and can float on the water surface.
View Article and Find Full Text PDFSmall
December 2024
College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China.
The quest for sustainable photocatalytic CO reduction reactions (CRR) emphasizes the development of high-efficiency, economically viable, and durable photocatalysts. A novel approach involving the synthesis of Bi-CDs/LDH heterojunctions, incorporating plasma metals and carbon quantum dots via hydrothermal and co-precipitation methods, yields remarkable results. The optimized BCL-4 photocatalyst demonstrates exceptional performance, with CH and CH yields of 1.
View Article and Find Full Text PDFWater Res
December 2024
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China. Electronic address:
J Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China. Electronic address:
Nat Commun
December 2024
i-lab of Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, China.
Methane (CH) photocatalytic upgrading to value-added chemicals, especially C products, is significant yet challenging due to sluggish energy/mass transfer and insufficient chemical driven-force in single photochemical process. Herein, we realize solar-driven CH oxidation to ethanol (CHOH) on crystalline carbon nitride (CCN) modified with CuS and Cu single atoms (CuS/Cu-CCN). The integration of photothermal effect and photocatalysis overcomes CH-to-CHOH conversion bottlenecks, with CuS as a hotspot to convert solar-energy to heat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!