AI Article Synopsis

  • Polycyclic aromatic hydrocarbons (PAHs), like benzo[a]pyrene (BaP), arise from incomplete combustion and are found in sources like tobacco smoke and charbroiled food, posing cancer risks.
  • Researchers genetically modified the nematode Caenorhabditis elegans to include human CYP1A1, CYP1A2, and epoxide hydrolase to study the effects of BaP exposure, observing changes in behavior and reproductive performance, such as increased pharyngeal pumping and decreased brood size.
  • The findings revealed that the humanized worms experienced more severe reproductive toxicity and genetic mutations when exposed to BaP, highlighting the potential of these modified organisms for improving research practices while working towards the

Article Abstract

Polycyclic aromatic hydrocarbons (PAHs), including the Group 1 human carcinogen benzo[a]pyrene (BaP), are produced by the incomplete combustion of organic matter and thus are present in tobacco smoke, charbroiled food and diesel exhaust. The nematode Caenorhabditis elegans is an established model organism, however it lacks the genetic components of the classical mammalian cytochrome P450 (CYP)-mediated BaP-diol-epoxide metabolism pathway. We therefore introduced human CYP1A1 or CYP1A2 together with human epoxide hydrolase (EPHX) into the worm genome by Mos1-mediated Single Copy Insertion (MosSCI) and evaluated their response to BaP exposure via toxicological endpoints. Compared to wild-type control, CYP-humanised worms were characterised by an increase in pharyngeal pumping rate and a decrease in volumetric surface area. Furthermore, BaP exposure reduced reproductive performance, as reflected in smaller brood size, which coincided with the downregulation of the nematode-specific major sperm protein as determined by transcriptomics (RNAseq). BaP-mediated reproductive toxicity was exacerbated in CYP-humanised worms at higher exposure levels. Collagen-related genes were downregulated in BaP-exposed animals, which correlate with the reduction in volumetric size. Whole genome DNA sequencing revealed a higher frequency of T > G (A > C) base substitution mutations in worms expressing human CYP1A1;EPHX which aligned with an increase in DNA adducts identified via an ELISA method (but not classical P-postlabelling). Overall, the CYP-humanised worms provided new insights into the value of genome-optimised invertebrate models by identifying the benefits and limitations within the context of the (3Rs) concept which aims to replace, reduce and refine the use of animals in research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2024.109187DOI Listing

Publication Analysis

Top Keywords

cyp-humanised worms
12
caenorhabditis elegans
8
expressing human
8
cytochrome p450
8
cyp1a1 cyp1a2
8
bap exposure
8
human
5
genome-modified caenorhabditis
4
elegans expressing
4
human cytochrome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!