Interactions and asymptotic analysis of N-soliton solutions for the n-component generalized higher-order Sasa-Satsuma equations.

Chaos

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

Published: December 2024

In this paper, we systematically study the N-solitons and asymptotic analysis of the integrable n-component third-fifth-order Sasa-Satsuma equations. We conduct the spectral analysis on the (n+2)-order matrix Lax pair to formulate a Riemann-Hilbert (RH) problem, which is used to generate the N-soliton solutions via the determinants. Moreover, we visually represent the interaction dynamics of multi-soliton solutions and analyze their asymptotic behaviors. Finally, we present the higher-order N-soliton solutions by dealing with the RH problem with higher-order zeros. These results will be useful to further analyze the multi-soliton structures and design the related physical experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0237425DOI Listing

Publication Analysis

Top Keywords

n-soliton solutions
12
asymptotic analysis
8
sasa-satsuma equations
8
interactions asymptotic
4
analysis n-soliton
4
solutions
4
solutions n-component
4
n-component generalized
4
generalized higher-order
4
higher-order sasa-satsuma
4

Similar Publications

Interactions and asymptotic analysis of N-soliton solutions for the n-component generalized higher-order Sasa-Satsuma equations.

Chaos

December 2024

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

In this paper, we systematically study the N-solitons and asymptotic analysis of the integrable n-component third-fifth-order Sasa-Satsuma equations. We conduct the spectral analysis on the (n+2)-order matrix Lax pair to formulate a Riemann-Hilbert (RH) problem, which is used to generate the N-soliton solutions via the determinants. Moreover, we visually represent the interaction dynamics of multi-soliton solutions and analyze their asymptotic behaviors.

View Article and Find Full Text PDF
Article Synopsis
  • - This work explores a rogue wave solution strategy based on the Hirota bilinear hypothesis to develop various soliton wave solutions for the generalized Hirota-Satsuma-Ito condition.
  • - The study examines multiple types of soliton waves, including first to fourth-order waves, and analyzes properties related to lump solutions and the Hessian lattice.
  • - Results are validated through simulations that produce 3D, density, and 2D graphs, suggesting new insights into traveling wave theory.
View Article and Find Full Text PDF

In this work, we discuss an application of the "inverse problem" method to find the external trapping potential, which has particular N trapped soliton-like solutions of the Gross-Pitaevskii equation (GPE) also known as the cubic nonlinear Schrödinger equation (NLSE). This inverse method assumes particular forms for the trapped soliton wave function, which then determines the (unique) external (confining) potential. The latter renders these assumed waveforms exact solutions of the GPE (NLSE) for both attractive (g<0) and repulsive (g>0) self-interactions.

View Article and Find Full Text PDF

An extended (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq equation is studied in this paper to construct periodic solution, n-soliton solution and folded localized excitation. Firstly, with the help of the Hirota's bilinear method and ansatz, some periodic solutions have been derived. Secondly, taking Burgers equation as an auxiliary function, we have obtained n-soliton solution and n-shock wave.

View Article and Find Full Text PDF

In this paper, the exact solutions of generalized nonlinear Schrödinger (GNLS) equation are obtained by using Darboux transformation(DT). We derive some expressions of the 1-solitons, 2-solitons and n-soliton solutions of the GNLS equation via constructing special Lax pairs. And we choose different seed solutions and solve the GNLS equation to obtain the soliton solutions, breather solutions and rational wave solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!