For lensless ghost imaging (GI) with thermal light, the axially relative motion constrained in the range of the system's depth of focus (DOF) can still cause image blurring because of a variable magnification. We propose a motion-deblurring GI system with pseudo-thermal light, which can overcome the resolution degradation caused by the axial motion. Both the analytical and experimental results demonstrate that high-resolution GI can be always obtained as long as the target's random motion range is smaller than the system's DOF, without using the prior information of motion estimation. We also show that the system's DOF can be extended by optimizing the geometrical shape of the laser spot on the rotating ground glass disk (RGGD). The imaging performance comparison between the proposed GI system and the corresponding lensless GI system is also discussed. This technique can promote the practical application of GI in the field of moving-target detection and recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.539273DOI Listing

Publication Analysis

Top Keywords

ghost imaging
8
system's dof
8
motion-deblurring ghost
4
imaging axially
4
axially moving
4
moving target
4
target lensless
4
lensless ghost
4
imaging thermal
4
thermal light
4

Similar Publications

This study presents a cutting-edge imaging technique for special unmanned vehicles (UAVs) designed to enhance tunnel inspection capabilities. This technique integrates ghost imaging inspired by the human visual system with lateral inhibition and variable resolution to improve environmental perception in challenging conditions, such as poor lighting and dust. By emulating the high-resolution foveal vision of the human eye, this method significantly enhances the efficiency and quality of image reconstruction for fine targets within the region of interest (ROI).

View Article and Find Full Text PDF

 The aim of this study was to determine the sensitivity and specificity and inter-reader reliability of previously known "ghost sign" and "penumbra sign" on T1-weighted (T1W) imaging and "ghost sign" on apparent diffusion coefficient (ADC) map in osteomyelitis (OM) of the extremities.  In this cross-sectional retrospective study, two fellowship-trained musculoskeletal readers blinded to final diagnosis of OM versus no OM were asked to report the penumbra sign and ghost sign on T1W images and ghost sign on ADC map, as well as diagnosis of OM. Cohen's kappa was used.

View Article and Find Full Text PDF

A Dual-Path Computational Ghost Imaging Method Based on Convolutional Neural Networks.

Sensors (Basel)

December 2024

College of Computer Science and Technology, Changchun University, Changchun 130022, China.

Ghost imaging is a technique for indirectly reconstructing images by utilizing the second-order or higher-order correlation properties of the light field, which exhibits a robust ability to resist interference. On the premise of ensuring the quality of the image, effectively broadening the imaging range can improve the practicality of the technology. In this paper, a dual-path computational ghost imaging method based on convolutional neural networks is proposed.

View Article and Find Full Text PDF

A Lightweight Deep Learning Network with an Optimized Attention Module for Aluminum Surface Defect Detection.

Sensors (Basel)

November 2024

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.

Aluminum is extensively utilized in the aerospace, aviation, automotive, and other industries. The presence of surface defects on aluminum has a significant impact on product quality. However, traditional detection methods fail to meet the efficiency and accuracy requirements of industrial practices.

View Article and Find Full Text PDF

Effects of Different Concentrations of AmB on the Unsaturated Phospholipid-Cholesterol Membrane Using the Langmuir Monolayer and Liposome Models.

Molecules

November 2024

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China.

Amphotericin B (AmB) causes toxicity to the erythrocyte membrane, leading to hemolysis, which limits the clinically effective dose for AmB intravenous therapy in invasive fungal infections. The molecular mechanism by which AmB adheres to the membrane of erythrocytes is the key factor in causing AmB to be toxic to the membrane of erythrocytes, but it is not yet fully understood; the mechanism by which AmB adheres to the liquid microdomains with higher fluidity formed by cholesterol and unsaturated phospholipids remains especially unclear. This study examined the adsorption of AmB at different concentrations, 5, 45, 85, and 125 μg/mL, on unsaturated phospholipid membranes containing 50 mol% cholesterol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!