A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High transparent conductive Mg, Al, and Ga co-doped ZnO multilayer thin films with Cu interlayer: fabrication, structure, and characteristics. | LitMetric

AI Article Synopsis

  • The study focuses on creating high-quality transparent electrodes without using indium by developing Mg, Al, and Ga co-doped ZnO/Cu/MgZnO multilayer thin films through magnetron sputtering.
  • As the thickness of the copper layer increases from 0 to 25 nm, the crystal orientation of ZnO decreases while that of Cu increases, leading to a smoother and more defect-free film surface.
  • An optimal copper layer thickness of 11 nm achieves the best photoelectric performance, with a resistivity of 1.24×10⁻⁴ Ω cm and a visible light transmittance of 84.2%, while doping with magnesium significantly enhances the films' optoelectronic properties.

Article Abstract

Overcoming the challenge of preparing high-transparency and low-resistivity thin films is of great significance for the development of indium-free transparent electrodes. In the present work, high-quality Mg, Al, and Ga co-doped ZnO (MAGZO)/Cu/MAGZO multilayer thin films are deposited on glass by magnetron sputtering. The effects of Cu layer thickness ( ) on the structural, morphological, optical, and electrical characteristics of the films are investigated in detail. With increasing from 0 to 25 nm, the growth orientation of (002) ZnO crystal weakens, while that of (111) Cu crystal strengthens, and the surface of the films exhibits uniform, low roughness, and defect-free characteristics. Additionally, both the resistivity and the optical transmittance generally decrease with increasing Cu layer thickness. Interestingly, the average visible transmittance has a reverse change as increases from 5 to 11 nm, resulting in the optimal photoelectric performance of the multilayers at = 11 nm: the figure of merit of 9.42 × 10 Ω with the resistivity of 1.24 × 10 Ω cm and the visible transmittance of 84.2%. Compared with other reported sandwich transparent conductive films, it is found that doping Mg in the oxide layer is the key to improving the overall optoelectronic properties of the multilayers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.545229DOI Listing

Publication Analysis

Top Keywords

thin films
12
transparent conductive
8
co-doped zno
8
multilayer thin
8
layer thickness
8
visible transmittance
8
films
6
high transparent
4
conductive co-doped
4
zno multilayer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!