AI Article Synopsis

  • A novel coordination polymer gel made of zirconium and a specific compound was developed to effectively remove Cr(VI) from water.
  • The optimization process achieved an impressive 99% removal efficiency under specific conditions, with significant adsorption capacity measurements.
  • The study employed various models to understand the adsorption mechanisms, indicating that multiple interactions, such as coordination exchange and hydrogen bonding, play important roles, while the gel remained effective even after several reuse cycles.

Article Abstract

In this work, a novel pristine coordination polymer gel composed of zirconium and 2-amino-5-mercapto-1,3,4-thiadiazole is unveiled and explored to remove Cr(VI) from aqueous systems. A Box-Behnken design, coupled with a genetic algorithm and desirability function, was used for optimizing the controllable factors for maximum removal efficiency. Under optimized conditions (A = 50 mg L, B = 40 mg, C = 90 min, and D = 4), 99% of Cr(VI) was removed, and the saturation adsorption capacity recorded was 132.37 mg g. The adsorption data were investigated through statistical physics modeling. The most suited statistical physics model (monolayer with three energies; = 0.994-0.997, χ = 0.008-0.024), combined with site energy distribution analysis, XPS, and FTIR, unraveled the uptake mechanism. At the first and third active sites, Cr(VI) uptake was multimolecular ( > 1), while at the second active site, it was a mixed multimolecular (298 K, > 1) and multidocking (308 and 318 K, < 1). The adsorption energy values indicated the involvement of coordination exchange ( = 53.40-58.47 kJ mol), electrostatic interaction ( = 29.56-32.29 kJ mol), and hydrogen bonding ( = 24.68-28.35 kJ mol) in Cr(VI) adsorption. The BSf(1.5, α) model fitted best ( = 0.976-0.994, χ = 0.023-0.377) to the kinetic data under all conditions. Common coexisting ions had no significant impact on removal efficiency (% > 97% at 1:3), and the sorbent could be reutilized up to 5 uptake-elution cycles (>96% efficiency). The practical utility of ZrAMTD was investigated by remediating Cr(VI) contaminated real water samples (% ≥ 92.91%).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c03402DOI Listing

Publication Analysis

Top Keywords

statistical physics
12
site energy
8
energy distribution
8
physics modeling
8
crvi adsorption
8
coordination polymer
8
polymer gel
8
removal efficiency
8
crvi
6
adsorption
5

Similar Publications

Nitroxide-Containing Poly(2-oxazoline)s Show Dual-Stimuli-Responsive Behavior and Radical-Trapping Activity.

Biomacromolecules

January 2025

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.

2,2,6,6-Tetramethylpiperidine--oxyl (TEMPO) structures possess potent antioxidant activities for biomedical applications. TEMPO immobilization on hydrophilic polymers is a powerful strategy to improve its properties; however, it is mostly limited to reversible-deactivation radical polymerizations or postpolymerization approaches. Here, we immobilized TEMPO units on a hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) backbone through cationic ring-opening polymerization (CROP) of a new 2-oxazoline monomer bearing a methoxy-protected TEMPO 2-substituent with 2-ethyl-2-oxazoline (EtOx).

View Article and Find Full Text PDF

ISLRWR: A network diffusion algorithm for drug-target interactions prediction.

PLoS One

January 2025

Shanghai Xinhao Information Technology Co., Ltd., Shanghai, China.

Machine learning techniques and computer-aided methods are now widely used in the pre-discovery tasks of drug discovery, effectively improving the efficiency of drug development and reducing the workload and cost. In this study, we used multi-source heterogeneous network information to build a network model, learn the network topology through multiple network diffusion algorithms, and obtain compressed low-dimensional feature vectors for predicting drug-target interactions (DTIs). We applied the metropolis-hasting random walk (MHRW) algorithm to improve the performance of the random walk with restart (RWR) algorithm, forming the basis by which the self-loop probability of the current node is removed.

View Article and Find Full Text PDF

Background: For radiotherapy of head and neck cancer (HNC) magnetic resonance imaging (MRI) plays a pivotal role due to its high soft tissue contrast. Moreover, it offers the potential to acquire functional information through diffusion weighted imaging (DWI) with the potential to personalize treatment. The aim of this study was to acquire repetitive DWI during the course of online adaptive radiotherapy on an 1.

View Article and Find Full Text PDF

Anatomical characterization of Semi-arid Bignoniaceae using light and scanning electron microscopy.

BMC Plant Biol

January 2025

Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.

Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.

Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.

View Article and Find Full Text PDF

Emergence of opposing arrows of time in open quantum systems.

Sci Rep

January 2025

School of Mathematics and Physics, University of Surrey, GU2 7XH, Guildford, United Kingdom.

Deriving an arrow of time from time-reversal symmetric microscopic dynamics is a fundamental open problem in many areas of physics, ranging from cosmology, to particle physics, to thermodynamics and statistical mechanics. Here we focus on the derivation of the arrow of time in open quantum systems and study precisely how time-reversal symmetry is broken. This derivation involves the Markov approximation applied to a system interacting with an infinite heat bath.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!