Diabetic testicular dysfunction (DTD) poses a significant threat to male reproductive health. This study delves into the potential of piperazine ferulate (PF), a natural phenolic compound, in alleviating DTD and sheds light on its underlying mechanisms in rats. Animals were divided into the control, PF, diabetic, and diabetic plus PF groups. Diabetes was induced in rats with a single intraperitoneal (i.p.) injection of streptozotocin (STZ) at 50 mg/kg. PF was administered at 50 mg/kg/day via i.p. injection for four weeks. Significant changes in sexual behavior were observed in diabetic rats, which additionally revealed lower serum levels of testosterone, FSH, and LH. The abnormalities in sperm count, viability, motility, and morphology occurred along with the demonstrated suppression of genes and protein expression related to spermatogenesis. Atrophy of the seminiferous tubules and extensive degeneration and necrosis of the germ and Leydig cells were highlighted by histopathological examination. The testicular function of diabetic rats was significantly improved after PF administration, evidenced by normalized testicular histology, increased testosterone levels, and enhanced sperm quality. In addition to reducing inflammatory cytokines, COX2, and NF-κB expression, pf administration elevated the antioxidant levels and Nrf2/HO-1 expression. Furthermore, key signaling pathways involved in testicular degeneration are regulated by PF. It promoted cell survival and tissue repair by activating the protective TGF-β signaling pathway and attenuating the MAPK/ERK/JNK signaling cascade, which in turn reduced inflammation and apoptosis. PF suppressed the expression of INSL3, SPHK1, CD62E, ANGPTL2, and miR-148a-5p, while increasing the expression of testicular genes like HSD17B1, DAZL, and S1P, addressing DTD. This study highlights the potential of PF to restore testicular function and fertility in diabetic males by modulating genetic and signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-024-03654-yDOI Listing

Publication Analysis

Top Keywords

piperazine ferulate
8
testicular dysfunction
8
tgf-β signaling
8
diabetic rats
8
testicular function
8
signaling pathways
8
testicular
7
diabetic
6
signaling
5
expression
5

Similar Publications

Diabetic testicular dysfunction (DTD) poses a significant threat to male reproductive health. This study delves into the potential of piperazine ferulate (PF), a natural phenolic compound, in alleviating DTD and sheds light on its underlying mechanisms in rats. Animals were divided into the control, PF, diabetic, and diabetic plus PF groups.

View Article and Find Full Text PDF

Piperazine ferulate inhibits diabetic nephropathy by suppressing AGE/RAGE-mediated inflammatory signaling in rats and podocytes.

Front Pharmacol

August 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Diabetic nephropathy (DN) is a serious complication that may occur during the later stages of diabetes, and can be further exacerbated by podocyte damage. Piperazine ferulate (PF) has well-defined nephroprotective effects and is used clinically in the treatment of chronic nephritis and other kidney diseases. However, the renoprotective effects and mechanisms of PF on DN are not clear.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent cause of dementia and is characterized by low levels of acetyl and butyrylcholine, increased oxidative stress, inflammation, accumulation of metals, and aggregations of Aβ and tau proteins. Current treatments for AD provide only symptomatic relief without impacting the pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multitarget molecules for AD, through extensive medicinal chemistry efforts, we have developed , harboring the key functional groups to provide not only symptomatic relief but also targeting oxidative stress, able to chelate iron, inhibiting NLRP3, and Aβ aggregation in various AD models.

View Article and Find Full Text PDF

Hepatoprotective effect of diammonium glycyrrhizinate and neuroprotective effect of piperazine ferulate on AmB-induced liver and kidney injury by suppressing apoptosis in vitro and in vivo.

Toxicon

August 2024

School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an, 710061, PR China. Electronic address:

Amphotericin B (AmB) induced liver and kidney injury is often responsible for hepatic and renal dysfunction. Therefore, the protection strategy on liver and renal functions in patients treated with AmB should be emphasized. In this paper, diammonium glycyrrhizinate (DG) and piperazine ferulate (PF) were taken as the research object to study its hepatoprotective and neuroprotective effect on AmB-induced liver and kidney damage in vitro and in vivo.

View Article and Find Full Text PDF

The protective effect and mechanism of piperazine ferulate in rats with 5/6 nephrectomy-caused chronic kidney disease.

Naunyn Schmiedebergs Arch Pharmacol

August 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.

Chronic kidney disease (CKD) is a type of chronic disease in which multiple factors are responsible for the structural and functional disorders of the kidney. Piperazine ferulate (PF) has anti-platelet and anti-fibrotic effects, and its mechanism of action remains to be elucidated. This study aimed to investigate the protective effect of PF against CKD in rats and to determine its mechanism of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!