Acute myocardial infarction (AMI) accounts for a significant proportion of global fatalities, and early detection is crucial for improving patient outcomes. However, current diagnostic methods often struggle to detect AMI in its early stages. Herein, we present an electrochemical sensor utilizing a fractal gold (FracAu) electrode and hybridization chain reaction (HCR) amplification technology to detect AMI-specific microRNAs (miRNAs). When the target sequence was added, the HCR was triggered, leading to the formation of a long-nicked DNA double helix that efficiently captured a larger quantity of positively charged RuHex molecules, resulting in significant electrochemical signal amplification. More importantly, to avoid false positive signals, exonuclease I (Exo I) was introduced to selectively cleave single-stranded DNA (ssDNA) probes. These ssDNA probes, underwent random hydrolysis from hpDNA probes, could hybridize with helper DNA1 in the absence of the target, initiating the HCR process and producing a false positive signal. The inclusion of Exo I effectively avoided false positive signals and reduced background noise. Under optimized conditions, the fabricated sensor exhibited significant sensitivity and selectivity, showing a broad linear detection range from 10 pM to 10 nM and a low limit of 0.9 fM. The fabricated electrochemical sensor also successfully detected AMI-specific miRNA in real serum samples, underscoring its diagnostic promise. By providing a reliable tool for early detection, the innovative sensor holds significant potential in combating global cardiovascular disease-related mortality rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4an01065e | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFLangmuir
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy.
In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea.
pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!