Topologically protected zero-directional refraction of elastic waves in a pillared phononic crystal plate.

J Acoust Soc Am

College of Mechanical Engineering, University of South China, Hengyang, 421001, People's Republic of China.

Published: December 2024

AI Article Synopsis

  • Zero-directional refraction occurs when waves bypass refraction at material interfaces, enabling innovative applications in optics and acoustics.
  • Researchers have developed a pillared phononic crystal structure that allows for this refraction without needing a zero index of material parameters, which has been a significant challenge in past studies.
  • By manipulating the structure's unit cell and inducing a topological phase transition, the elastic waves can exhibit robust zero-directional refraction, even amid obstacles like cavities and bends, paving the way for advanced wave emission technologies.

Article Abstract

Zero-directional refraction phenomenon refers to the capability where waves do not undergo refraction at a material interface under specific conditions, which has broad potential applications, particularly in the fields of optics, acoustics, and phononics. Previous research of zero-directional refraction rely on the zero or equivalent-zero index of the material parameters, which is quite challenging to manipulate the zero-directional transport of waves. In this paper, based on the topological theory, we have constructed a pillared phononic crystal (PnC) plate structure with pseudospin topologically protected transport, enabling zero-directional refraction of elastic waves without using zero or equivalent-zero index of the material parameters. By initially adjusting the contraction and expansion of the pillared unit cell, a band inversion effect between pseudospin dipoles and quadrupoles is induced, thus leading to a topological phase transition of elastic wave. Combining the phase matching between topological interface and terminal medias, the elastic waves in pillared PnC plate can exhibit zero-directional refraction behavior. Finally, it was demonstrated that the phenomenon of zero-directional refraction exhibits robustness in the presence of cavities and bends, and different incident angles. This research result provides new insights for designing and manipulating the emission and directional antennas of elastic waves.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0034636DOI Listing

Publication Analysis

Top Keywords

zero-directional refraction
24
elastic waves
16
topologically protected
8
refraction elastic
8
waves pillared
8
pillared phononic
8
phononic crystal
8
equivalent-zero material
8
material parameters
8
pnc plate
8

Similar Publications

Article Synopsis
  • Zero-directional refraction occurs when waves bypass refraction at material interfaces, enabling innovative applications in optics and acoustics.
  • Researchers have developed a pillared phononic crystal structure that allows for this refraction without needing a zero index of material parameters, which has been a significant challenge in past studies.
  • By manipulating the structure's unit cell and inducing a topological phase transition, the elastic waves can exhibit robust zero-directional refraction, even amid obstacles like cavities and bends, paving the way for advanced wave emission technologies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!