SbcB facilitates natural transformation in in an exonuclease-independent manner.

J Bacteriol

Department of Biology, Indiana University, Bloomington, Indiana, USA.

Published: December 2024

AI Article Synopsis

  • * The exonuclease SbcB unexpectedly promotes NT by acting after DNA uptake but before the recombination process, without relying on its typical DNA-degrading function.
  • * This research enhances our understanding of how genes, including those related to antibiotic resistance, spread among bacteria and reveals a new role for SbcB in supporting homologous recombination during NT.

Article Abstract

Unlabelled: Natural transformation (NT) is a conserved mechanism of horizontal gene transfer in bacterial species. During this process, DNA is taken up into the cytoplasm where it can be integrated into the host genome by homologous recombination. We have previously shown that some cytoplasmic exonucleases inhibit NT by degrading ingested DNA prior to its successful recombination. However, one exonuclease, SbcB, counterintuitively promotes NT in . Here, through a systematic analysis of the distinct steps of NT, we show that SbcB acts downstream of DNA uptake into the cytoplasm, but upstream of recombinational branch migration. Through mutational analysis, we show that SbcB promotes NT in a manner that does not rely on its exonuclease activity. Finally, we provide genetic evidence that SbcB directly interacts with the primary bacterial recombinase, RecA. Together, these data advance our molecular understanding of horizontal gene transfer in and reveal that SbcB promotes homologous recombination during NT in a manner that does not rely on its canonical exonuclease activity.

Importance: Horizontal gene transfer by natural transformation contributes to the spread of antibiotic resistance and virulence factors in bacterial species. Here, we study how one protein, SbcB, helps facilitate this process in the facultative bacterial pathogen . SbcB is a well-known for its exonuclease activity (i.e., the ability to degrade the ends of linear DNA). Through this study, we uncover that while SbcB is important for natural transformation, it does not facilitate this process using its exonuclease activity. Thus, this work helps further our understanding of the molecular events required for this conserved evolutionary process and uncovers a function for SbcB beyond its canonical exonuclease activity.

Download full-text PDF

Source
http://dx.doi.org/10.1128/jb.00419-24DOI Listing

Publication Analysis

Top Keywords

natural transformation
16
exonuclease activity
16
horizontal gene
12
gene transfer
12
sbcb
10
bacterial species
8
homologous recombination
8
sbcb promotes
8
manner rely
8
canonical exonuclease
8

Similar Publications

Unlabelled: Human metapneumovirus (HMPV) is a significant respiratory pathogen, particularly in vulnerable populations.

Background: No vaccine for the prevention of HMPV is currently licensed, although several subunit vaccines are in development. Saponin-based adjuvant systems (AS), including QS-21, have transformed the field of subunit vaccines by dramatically increasing their potency and efficacy, leading to the development of several licensed vaccines.

View Article and Find Full Text PDF

Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection.

Sensors (Basel)

December 2024

School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.

RGB-T salient object detection (SOD) has received considerable attention in the field of computer vision. Although existing methods have achieved notable detection performance in certain scenarios, challenges remain. Many methods fail to fully utilize high-frequency and low-frequency features during information interaction among different scale features, limiting detection performance.

View Article and Find Full Text PDF

Advanced Trajectory Planning and Control for Autonomous Vehicles with Quintic Polynomials.

Sensors (Basel)

December 2024

School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.

This paper focuses on the design of vehicle trajectories and their control systems. A method based on quintic polynomials is utilized to develop trajectories for intelligent vehicles, ensuring the smooth continuity of the trajectory and related state curves under varying conditions. The construction of lateral and longitudinal controllers is discussed, which includes a tracking error model derived from the two-degree-of-freedom dynamic model of a two-wheeled vehicle and the application of the Frenet coordinate system transformation.

View Article and Find Full Text PDF

Localization accuracy in non-line-of-sight (NLOS) scenarios is often hindered by the complex nature of multipath propagation. Traditional approaches typically focus on NLOS node identification and error mitigation techniques. However, the intricacies of NLOS localization are intrinsically tied to propagation challenges.

View Article and Find Full Text PDF

This paper proposes the fixed-time prescribed performance optimal consensus control method for stochastic nonlinear multi-agent systems with sensor faults. The consensus error converges to the prescribed performance bounds in fixed-time by an improved performance function and coordinate transformation. Due to the unknown faults in sensors, the system states cannot be gained correctly; therefore, an adaptive compensation strategy is constructed based on the approximation capabilities of neural networks to solve the negative impact of sensor failures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!