Decay processes of exciplexes of cyanoanthracenes with alkylbenzene donors were compared to those with alkoxybenzenes. For the three decay processes of exciplexes, the radiative rate constant () of alkoxy derivatives is slightly lower than those of alkylbenzenes at the same average exciplex energy. However, the corresponding deactivation rate constants, intersystem crossing () and nonradiative decay (), are considerably higher. Consequently, the fluorescence quantum yields of the alkoxybenzene exciplexes are one-half to one-fifth of the corresponding alkylbenzenes at comparable emission energies. This trend is solvent-independent. The results can be rationalized in terms of the differing electronic character of the donor radical cation moieties in the alkoxy- vs alkylbenzene exciplexes and differences in their reorganization energies. The impact of these results for the design of exciplexes that emit more efficiently is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c06279DOI Listing

Publication Analysis

Top Keywords

fluorescence quantum
8
quantum yields
8
decay processes
8
processes exciplexes
8
exciplexes
6
alkyl- alkoxy-arene
4
alkoxy-arene substituents
4
substituents deactivation
4
deactivation processes
4
processes fluorescence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!