Fused heterocyclic scaffolds, such as benzimidazoles or larger ring systems containing a benzimidazole fragment, are frequently encountered in pharmaceutical compounds and other biologically active molecules. While there are many examples of N9- and/or C3-substituted 9-benzo[4,5]imidazo[2,1-][1,2,4]triazoles, current examples of the regioselective preparation of N1-substituted 1-benzo[4,5]imidazo[2,1-][1,2,4]triazoles are limited to N1-aryl substituted compounds, which also contain a C3-substituent. Here, we report an iodine-promoted C-H bond amination reaction that allows the selective preparation of 1-benzo[4,5]imidazo[2,1-][1,2,4]triazoles with a variety of aryl and alkyl N1-substituents. Not only do these cyclization reactions allow access to a new substitution pattern on the benzo[4,5]imidazo[2,1-][1,2,4]triazole scaffold, but they are also tolerant toward a wide range of functional groups, including esters, amides, alcohols, alkynes, and alkenes. Our findings expand the synthetic toolbox for the preparation of nitrogen containing fused heteroarenes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c02282DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731302PMC

Publication Analysis

Top Keywords

iodine-promoted c-h
8
c-h bond
8
bond amination
8
amination reaction
8
reaction synthesis
4
synthesis fused
4
fused tricyclic
4
tricyclic heteroarenes
4
heteroarenes fused
4
fused heterocyclic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!