Ultrafine particles (UFPs) pose a significant health risk, making comprehensive assessment essential. The influence of emission sources on particle concentrations is not only constrained by meteorological conditions but often intertwined with them, making it challenging to separate these effects. This study utilized valuable long-term particle number and size distribution (PNSD) data from 2018 to 2023 to develop a tree-based machine learning model enhanced with an interpretable component, incorporating temporal markers to characterize background or time series residuals. Our results demonstrated that, differing from PM, which is significantly shaped by planetary boundary layer height, wind speed plays a crucial role in determining the particle number concentration (PNC), showing strong regional specificity. Furthermore, we systematically identified and analyzed anthropogenically influenced periodic trends. Notably, while Aitken mode observations are initially linked to traffic-related peaks, both Aitken and nucleation modes contribute to concentration peaks during rush hour periods on short-term impacts after deweather adjustment. Pollutant baseline concentrations are largely driven by human activities, with meteorological factors modulating their variability, and the secondary formation of UFPs is likely reflected in temporal residuals. This study provides a flexible framework for isolating meteorological effects, allowing more accurate assessment of anthropogenic impacts and targeted management strategies for UFP and PNC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c07460 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!