Leveraging Foundational Models in Computational Biology: Validation, Understanding, and Innovation.

Pac Symp Biocomput

Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 6092 Chicago, IL, USA.

Published: December 2024

Large Language Models (LLMs) have shown significant promise across a wide array of fields, including biomedical research, but face notable limitations in their current applications. While they offer a new paradigm for data analysis and hypothesis generation, their efficacy in computational biology trails other applications such as natural language processing. This workshop addresses the state of the art in LLMs, discussing their challenges and the potential for future development tailored to computational biology. Key issues include difficulties in validating LLM outputs, proprietary model limitations, and the need for expertise in critical evaluation of model failure modes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

computational biology
12
leveraging foundational
4
foundational models
4
models computational
4
biology validation
4
validation understanding
4
understanding innovation
4
innovation large
4
large language
4
language models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!