Multimodal models have become increasingly important as they surpass single-modality approaches on diverse tasks ranging from question-answering to disease diagnosis. Despite the importance of multimodal learning, existing efforts focus on vision-language applications, where the number of modalities rarely exceeds four (images, text, audio, video). However, data in healthcare domain, may include many more modalities like X-rays, PET scans, MRIs, genetic screening, genomic data, and clinical notes, creating a need for both efficient and accurate data integration. Many state-of-the-art multimodal models rely on cross-attention or self-attention for effective data integration, which do not scale well for applications with more than two modalities. The complexity per layer of computing attention in either paradigm is, at best, quadratic with respect to the number of modalities, posing a computational bottleneck that impedes broad adoption. To address this, we propose a new attention mechanism, One-Versus-Others (OvO) attention, that scales linearly with the number of modalities, thus offering a significant reduction in computational complexity compared to existing multimodal attention methods. Using three clinical datasets with multiple diverse modalities, we show that our method decreases computation costs while maintaining or increasing performance compared to popular integration techniques. Across all clinical datasets, OvO reduced the number of required floating point operations (FLOPs) by at least 91.98%, demonstrating its significant impact on efficiency and enabling multi-modal predictions in healthcare.
Download full-text PDF |
Source |
---|
Anal Chem
January 2025
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States.
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.
View Article and Find Full Text PDFNeurol Sci
January 2025
Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy.
Background: Intrathecal baclofen therapy (ITB) is a well-established treatment modality for severe spasticity, but it is burdened by the need for periodic pump refills. The introduction of a new formulation of baclofen with an extended stability of 180 days (Neteka, Nordic Group BV) could decrease the frequency of refills. We aimed at analyzing the clinical and economic impact of Neteka introduction in our outpatient facility.
View Article and Find Full Text PDFSupport Care Cancer
January 2025
Department of Internal Nursing, Faculty of Health Sciences, Erciyes University, Kayseri, Turkey.
Background: Transcutaneous electrical stimulation after breast cancer surgery has been utilized for various purposes, but the full efficacy of this treatment approach on postoperative symptoms remains unclear.
Aim: This study aimed to answer the question: Does transcutaneous electrical nerve stimulation significantly impact postoperative patient outcomes in individuals undergoing breast cancer surgery?
Methods: A systematic review of randomized controlled trials was conducted. Because of the limited number of studies included, it was not feasible to perform a meta-analysis.
Eur J Nucl Med Mol Imaging
January 2025
Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt, Germany.
Purpose: Lutetium-177 Prostate-specific membrane antigen (Lu-PSMA) radioligand therapy is EMA-approved for metastatic castration resistant prostate cancer (mCRPC) after androgen receptor pathway inhibition (ARPI) and taxan-based chemotherapy. However, its effect in taxan-naïve patients is under current investigation.
Methods: We relied on the FRAMCAP database to elaborate Lu-PSMA therapy outcomes of progression-free (PFS) and overall (OS) in taxan-naïve mCRPC patients after previous ARPI treatment.
Cochrane Database Syst Rev
January 2023
Research Department of Clinical, Educational and Health Psychology, University College London, London, UK.
Background: Cognitive stimulation (CS) is an intervention for people with dementia offering a range of enjoyable activities providing general stimulation for thinking, concentration and memory, usually in a social setting, such as a small group. CS is distinguished from other approaches such as cognitive training and cognitive rehabilitation by its broad focus and social elements, aiming to improve domains such as quality of life (QoL) and mood as well as cognitive function. Recommended in various guidelines and widely implemented internationally, questions remain regarding different modes of delivery and the clinical significance of any benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!