Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alzheimer's disease (AD), the predominant form of dementia, is influenced by several risk factors, including type 2 diabetes (T2D), a metabolic disorder characterized by the dysregulation of blood sugar levels. Despite mouse and human studies reporting this connection between T2D and AD, the mechanism by which T2D contributes to AD pathobiology is not well understood. A challenge in understanding mechanistic links between these conditions is that evidence between mouse and human experimental models must be synthesized, but translating between these systems is difficult due to evolutionary distance, physiological differences, and human heterogeneity. To address this, we employed a computational framework called translatable components regression (TransComp-R) to overcome discrepancies between pre-clinical and clinical studies using omics data. Here, we developed a novel extension of TransComp-R for multi-disease modeling to analyze transcriptomic data from brain samples of mouse models of AD, T2D, and simultaneous occurrence of both disease (ADxT2D) and postmortem human brain data to identify enriched pathways predictive of human AD status. Our TransComp-R model identified inflammatory and estrogen signaling pathways encoded by mouse principal components derived from models of T2D and ADxT2D, but not AD alone, predicted with human AD outcomes. The same mouse PCs predictive of human AD outcomes were able to capture sex-dependent differences in human AD biology, including significant effects unique to female patients, despite the TransComp-R being derived from data from only male mice. We demonstrated that our approach identifies biological pathways of interest at the intersection of the complex etiologies of AD and T2D which may guide future studies into pathogenesis and therapeutic development for patients with T2D-associated AD.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!