The Impact of Ancestry on Genome-Wide Association Studies.

Pac Symp Biocomput

Genomics and Computational Biology Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

Published: December 2024

Genome-wide association studies (GWAS) are an important tool for the study of complex disease genetics. Decisions regarding the quality control (QC) procedures employed as part of a GWAS can have important implications on the results and their biological interpretation. Many GWAS have been conducted predominantly in cohorts of European ancestry, but many initiatives aim to increase the representation of diverse ancestries in genetic studies. The question of how these data should be combined and the consequences that genetic variation across ancestry groups might have on GWAS results warrants further investigation. In this study, we focus on several commonly used methods for combining genetic data across diverse ancestry groups and the impact these decisions have on the outcome of GWAS summary statistics. We ran GWAS on two binary phenotypes using ancestry-specific, multi-ancestry mega-analysis, and meta-analysis approaches. We found that while multi-ancestry mega-analysis and meta-analysis approaches can aid in identifying signals shared across ancestries, they can diminish the signal of ancestry-specific associations and modify their effect sizes. These results demonstrate the potential impact on downstream post-GWAS analyses and follow-up studies. Decisions regarding how the genetic data are combined has the potential to mask important findings that might serve individuals of ancestries that have been historically underrepresented in genetic studies. New methods that consider ancestry-specific variants in conjunction with the shared variants need to be developed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

genome-wide association
8
association studies
8
genetic studies
8
data combined
8
ancestry groups
8
genetic data
8
multi-ancestry mega-analysis
8
mega-analysis meta-analysis
8
meta-analysis approaches
8
gwas
6

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Limited whole genome sequencing (WGS) studies in Asian populations result in a lack of representative reference panels, thus hindering the discovery of ancestry-specific variants. Here, we present the South and East Asian reference Database (SEAD) panel ( https://imputationserver.westlake.

View Article and Find Full Text PDF

Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic analysis of 1534 P.

View Article and Find Full Text PDF

The genetic and observational nexus between diabetes and arthritis: a national health survey and mendelian randomization analysis.

Nutr Diabetes

December 2024

Department of International Medical, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.

Background: Diabetes mellitus (DM) and arthritis are prevalent conditions worldwide. The intricate relationship between these two conditions, especially in the context of various subtypes of arthritis, remains a topic of interest.

Objective: To investigate the relationship between diabetes and arthritis, with a focus on Rheumatoid Arthritis (RA), using data from the National Health and Nutrition Examination Survey (NHANES) and Mendelian Randomization (MR) analysis.

View Article and Find Full Text PDF

Honeybees, Apis mellifera, have experienced the full impacts of globalisation, including the recent invasion by the parasitic mite Varroa destructor, now one of the main causes of colony losses worldwide. The strong selection pressure it exerts has led some colonies to develop defence strategies conferring some degree of resistance to the parasite. Assuming these traits are partly heritable, selective breeding of naturally resistant bees could be a sustainable strategy for fighting infestations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!