A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LLM-CGM: A Benchmark for Large Language Model-Enabled Querying of Continuous Glucose Monitoring Data for Conversational Diabetes Management. | LitMetric

Over the past decade, wearable technology has dramatically changed how patients manage chronic diseases. The widespread availability of on-body sensors, such as heart rate monitors and continuous glucose monitoring (CGM) sensors, has allowed patients to have real-time data about their health. Most of these data are readily available on patients' smartphone applications, where patients can view their current and retrospective data. For patients with diabetes, CGM has transformed how their disease is managed. Many sensor devices interface with smartphones to display charts, metrics, and alerts. However, these metrics and plots may be challenging for some patients to interpret. In this work, we explore how large language models (LLMs) can be used to answer questions about CGM data. We produce an open-source benchmark of time-series question-answering tasks for CGM data in diabetes management. We evaluate different LLM frameworks to provide a performance benchmark. Lastly, we highlight the need for more research on how to optimize LLM frameworks to best handle questions about wearable data. Our benchmark is publicly available for future use and development. While this benchmark is specifically designed for diabetes care, our model implementation and several of the statistical tasks can be extended to other wearable device domains.

Download full-text PDF

Source

Publication Analysis

Top Keywords

large language
8
continuous glucose
8
glucose monitoring
8
diabetes management
8
cgm data
8
llm frameworks
8
data
7
patients
5
llm-cgm benchmark
4
benchmark large
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!