Unraveling the Molecular Basis for G-Quadruplex-Binders to ALS/FTD-Associated G4C2 Repeats of the C9orf72 Gene.

Chembiochem

Department of Biological, Chemical, and Pharmaceutical Sciences, Technologies, Università di Palermo, Viale delle Scienze Edificio 17, 90128, Palermo, Italy.

Published: December 2024

The most recurrent familial cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the presence of an abnormal number of intronic GGGGCC (GC) repetitions in the C9orf72 gene, which has been proposed to drive ALS/FTD pathogenesis. Recently, it has been shown that such GC repetitions can fold into G-quadruplex (G4) secondary structures. These G4s have been selectively stabilized by small-molecule binders, furnishing proof-of-principle that targeting these non-canonical nucleic acid sequences represents a novel and effective therapeutic strategy to tackle neurodegenerative disorders. However, precise information on the mechanism of action of these compounds is still lacking. Here, by performing in silico investigations, we unraveled the molecular basis for the selectivity of a series of known structurally related C9orf72 G4-binders. Moreover, we investigated the binding properties of a strong and selective metal-based G4 stabilizer, the Au bis-N-heterocyclic carbene (NHC) complex - Au(TMX) - showing that it moderately stabilizes GC G4 RNA by Förster resonance energy transfer (FRET) DNA melting assays. Using metadynamics (metaD) simulations, the Au(TMX) binding mode and the associated free-energy landscape were also evaluated. This information paves the way for developing improved compounds to tackle ALS/FTD neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202400974DOI Listing

Publication Analysis

Top Keywords

molecular basis
8
c9orf72 gene
8
neurodegenerative disorders
8
unraveling molecular
4
basis g-quadruplex-binders
4
g-quadruplex-binders als/ftd-associated
4
als/ftd-associated g4c2
4
g4c2 repeats
4
repeats c9orf72
4
gene recurrent
4

Similar Publications

Background: The Plasmodium proteasome emerges as a promising target for anti-malarial drug development due to its potential activity against multiple life cycle stages.

Methods: In this investigation, a comparative analysis was conducted on the structural features of the β5 subunit in the 20S proteasomes of both Plasmodium and humans.

Results: The findings underscore the structural diversity inherent in both proteasomes.

View Article and Find Full Text PDF

Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.

View Article and Find Full Text PDF

The release of algal organic matter (AOM) during seasonal algal blooms increases the complexity and heterogeneity of natural organic matter (NOM) in water sources, altering its hydrophilic-hydrophobic balance and posing significant challenges to conventional water treatment processes. This study aims to verify whether the (Granular activated carbon) GAC selected for the adsorption of NOM in sand filtration effluent can adapt to water quality fluctuations caused by AOM release, and identify the criteria influencing GAC adsorption performance. Results indicated that external surface area, mesopore volume, pore size and surface functional groups were key indicators of GAC adsorption performance.

View Article and Find Full Text PDF

Structural mechanism underlying PHO1;H1-mediated phosphate transport in Arabidopsis.

Nat Plants

January 2025

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation.

View Article and Find Full Text PDF

Elucidating the molecular basis of salt tolerance in potatoes through miRNA expression and phenotypic analysis.

Sci Rep

January 2025

Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.

Potatoes are a critical staple crop worldwide, yet their yield is significantly constrained by salt stress. Understanding and enhancing salt tolerance in potatoes is crucial for ensuring food security. This study evaluated the salt tolerance of 17 diverse potato varieties using principal component analysis, membership function analysis, cluster analysis, and stepwise regression analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!