The synthesis of high-quality single-crystal covalent organic frameworks (COFs) presents significant challenges, particularly in achieving precise control over their morphologies. Herein, we present a straightforward strategy to fine-tune the morphology of COF single crystals. Using rigid triptycene derivatives as the core building blocks and varying the amounts of aniline modulators, we successfully synthesized a series of high-quality COF single crystals with different aspect ratios and well-defined facets, JUC-663-X (X = 30 to 135, the equivalent of aniline). Their structures were characterized using PXRD, TEM, and N adsorption analyses to confirm the structural consistency. The study of the growth mechanism and DFT calculations elucidated the crucial role of aniline as a modulator in facilitating anisotropic competitive binding throughout the crystal growth process. Furthermore, our findings demonstrate that the aspect ratio of these single crystals significantly influences the adsorption properties of Rh B. This research not only paves new paths in the synthesis and morphological control of COF single-crystal materials but also provides profound insights into the relationship between COF morphology and functional performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c10071 | DOI Listing |
Sci Adv
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.
Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.
Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KU Leuven: Katholieke Universiteit Leuven, Chemistry, BELGIUM.
Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
During the preparation of single-domain (S-D) REBaCuO (RE-123) superconducting bulks, the seed crystals can serve as templates for crystal growth, guiding the newly formed crystals to grow in a specific direction, thereby ensuring the consistency of the crystal orientation within the sample. However, the infiltration temperature is typically restricted to approximately 1050 °C when employing NdBaCuO (Nd-123) crystal seeds in the traditional top-seeded infiltration growth (TSIG) technique for producing single-domain Y-123 bulk superconductors. In the present study, to overcome the temperature limitations of the heat treatment process, the optimized YO +011 IG (011 refers to BaCuO powder) method was employed to fabricate a group of single-domain Y-123 bulks with a high-temperature infiltration (1000-1300 °C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!