Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate's phase stiffness, thereby limiting critical temperatures - a phenomenon known as the BCS-BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (AC) that goes beyond the limits of the lattice BCS-BEC crossover. We identify that the interplay of strong correlations and multiorbital effects results in a localized superconducting state characterized by a short coherence length but robust stiffness and a domeless rise in critical temperature with increasing pairing interaction. To derive these insights, we introduce a new theoretical framework allowing us to calculate the fundamental length scales of superconductors, namely the coherence length ( ) and the London penetration depth ( ), even in presence of strong electron correlations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631768 | PMC |
http://dx.doi.org/10.1038/s41535-024-00706-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!