Although the anatomical arrangement of brain regions and the functional structures within them are similar across individuals, the representation of neural information, such as recorded brain activity, varies among individuals owing to various factors. Therefore, appropriate conversion and translation of brain information is essential when decoding neural information using a model trained using another person's data or to achieving brain-to-brain communication. We propose a brain representation transfer method that involves transforming a data representation obtained from one person's brain into that obtained from another person's brain, without relying on corresponding label information between the transferred datasets. We defined the requirements to enable such brain representation transfer and developed an algorithm that distills the assumption of common similarity structure across the brain datasets into a rotational and reflectional transformation across low-dimensional hyperspheres using encoders for non-linear dimensional reduction. We first validated our proposed method using data from artificial neural networks as substitute neural activity and examining various experimental factors. We then evaluated the applicability of our method to real brain activity using functional magnetic resonance imaging response data acquired from human participants. The results of these validation experiments showed that our method successfully performed representation transfer and achieved transformations in some cases that were similar to those obtained when using corresponding label information. Additionally, we reconstructed images from individuals' data without training personalized decoders by performing brain representation transfer. The results suggest that our unsupervised transfer method is useful for the reapplication of existing models personalized to specific participants and datasets to decode brain information from other individuals. Our findings also serve as a proof of concept for the methodology, enabling the exchange of the latent properties of neural information representing individuals' sensations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634869 | PMC |
http://dx.doi.org/10.3389/fninf.2024.1470845 | DOI Listing |
Prog Addit Manuf
July 2024
Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.
View Article and Find Full Text PDFNeural Comput Appl
December 2022
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, USA.
Artificial neural networks (ANNs) are one of the most promising tools in the quest to develop general artificial intelligence. Their design was inspired by how neurons in natural brains connect and process, the only other substrate to harbor intelligence. Compared to biological brains that are sparsely connected and that form sparsely distributed representations, ANNs instead process information by connecting all nodes of one layer to all nodes of the next.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Power, Adama Science and Technology University, Adama, 1888, Ethiopia.
Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision.
View Article and Find Full Text PDFNeural Netw
January 2025
Defense Innovation Institute, Chinese Academy of Military Science, Beijing 100071, China; Intelligent Game and Decision Laboratory, China.
The Physics-informed Neural Network (PINN) has been a popular method for solving partial differential equations (PDEs) due to its flexibility. However, PINN still faces challenges in characterizing spatio-temporal correlations when solving parametric PDEs due to network limitations. To address this issue, we propose a Physics-Informed Neural Implicit Flow (PINIF) framework, which enables a meshless low-rank representation of the parametric spatio-temporal field based on the expressiveness of the Neural Implicit Flow (NIF), enabling a meshless low-rank representation.
View Article and Find Full Text PDFNeural Netw
January 2025
Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), 138632, Singapore. Electronic address:
Accurate decoding of electroencephalogram (EEG) signals in the shortest possible time is essential for the realization of a high-performance brain-computer interface (BCI) system based on the steady-state visual evoked potential (SSVEP). However, the degradation of decoding performance of short-length EEG signals is often unavoidable due to the reduced information, which hinders the development of BCI systems in real-world applications. In this paper, we propose a relaxed matching knowledge distillation (RMKD) method to transfer both feature-level and logit-level knowledge in a relaxed manner to improve the decoding performance of short-length EEG signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!